
DeepGini: Prioritizing Massive Tests to Enhance the Robustness
of Deep Neural Networks

Yang Feng

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

fengyang@nju.edu.cn

Qingkai Shi

The Hong Kong University of Science

and Technology

Hong Kong, China

qshiaa@cse.ust.hk

Xinyu Gao

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

mf1932046@smail.nju.edu.cn

Jun Wan

Ant Financial Services Group

Hangzhou, China

wukun.wj@antfin.com

Chunrong Fang

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

fangchunrong@nju.edu.cn

Zhenyu Chen

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

zychen@nju.edu.cn

ABSTRACT
Deep neural networks (DNN) have been deployed in many software

systems to assist in various classification tasks. In company with

the fantastic effectiveness in classification, DNNs could also exhibit

incorrect behaviors and result in accidents and losses. Therefore,

testing techniques that can detect incorrect DNN behaviors and

improveDNNquality are extremely necessary and critical. However,

the testing oracle, which defines the correct output for a given

input, is often not available in the automated testing. To obtain the

oracle information, the testing tasks of DNN-based systems usually

require expensive human efforts to label the testing data, which

significantly slows down the process of quality assurance.

To mitigate this problem, we propose DeepGini, a test prioritiza-

tion technique designed based on a statistical perspective of DNN.

Such a statistical perspective allows us to reduce the problem ofmea-

suring misclassification probability to the problem of measuring set

impurity, which allows us to quickly identify possibly-misclassified

tests. To evaluate, we conduct an extensive empirical study on pop-

ular datasets and prevalent DNN models. The experimental results

demonstrate that DeepGini outperforms existing coverage-based

techniques in prioritizing tests regarding both effectiveness and

efficiency. Meanwhile, we observe that the tests prioritized at the

front by DeepGini are more effective in improving the DNN quality

in comparison with the coverage-based techniques.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00

https://doi.org/10.1145/3395363.3397357

KEYWORDS
Deep Learning, Test Case Prioritization, Deep Learning Testing.

ACM Reference Format:
Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu

Chen. 2020. DeepGini: Prioritizing Massive Tests to Enhance the Robust-

ness of Deep Neural Networks. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’20), July
18–22, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3395363.3397357

1 INTRODUCTION
We are entering the era of deep learning, which has been widely

adopted in many areas. Famous applications of deep learning in-

clude image classification [13], autonomous driving [2], speech

recognition [45], playing games [35], and so on. Although for the

well-defined tasks, such as in the case of Go [35], deep learning

has achieved or even surpassed the human-level capability, it still

has many issues on reliability and quality. These issues could cause

significant losses such as in the accidents caused by the self-driving

car of Google and Tesla [7, 36, 50].

Testing is considered to be the common practice for software

quality assurance. However, testing on DNN-based software is

significantly different from conventional software because, while

conventional software depends on programmers to manually build

up the business logic, DNNs are constructed based on a data-driven

programming paradigm. Thus, sufficient test data, with oracle in-

formation, is critical for detecting misbehaviors of DNN-based

software. Unfortunately, like the testing techniques for conven-

tional software, DNN testing also faces the problem that automated

testing oracle is often unavailable. For example, it costs more than

49,000 workers from 167 countries for about 9 years to label the

data in ImageNet [8], one of the largest visual recognition datasets

containing millions of images in more than 20,000 categories.

Specially, in the context of testing DNN-based systems, software

testers often focus on the tests that can cause the system to behave

incorrectly, because diagnosing these tests can provide insights

into various problems in the program. This fact naturally motivates

us to propose a technique to prioritize tests so that fault-inducing

tests can be labeled and analyzed before the other tests. In this

177

https://doi.org/10.1145/3395363.3397357
https://doi.org/10.1145/3395363.3397357
https://doi.org/10.1145/3395363.3397357
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3395363.3397357&domain=pdf&date_stamp=2020-07-18

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen

manner, we can obtain maximum benefit from human efforts, even

the labeling process is prematurely halted at some arbitrary point

due to resource limit.

In the past decades, many test prioritization techniques have

been proposed for conventional software systems [10, 31, 46]. In

these techniques, code coverage is employed as the metric to guide

the prioritization procedure. Two main coverage-based techniques

are known as coverage-total and coverage-additional test prioriti-

zation [46]. A coverage-total method prioritizes tests based on their

individual total coverage rate. That is, we prefer a test to the other

one if it covers more program elements. A coverage-additional

method differs from the coverage-total method in that, it prefers

a test if it can cover more program elements that have not been

covered by previous tests.

Unfortunately, for DNN-based systems, although several neuron-

coverage criteria have been proposed by software engineering re-

searchers [22, 25], the aforementioned coverage-based methods are

not effective as expected, due to some new challenges:

• First, these criteria are proposed to measure testing adequacy.

It is often not clear how to improve the DNN quality after

testing a DNN with these coverage criteria.

• Second, some coverage criteria cannot distinguish the fault

detection capability of different tests. Thus, we cannot prior-

itize them effectively using the coverage-total prioritization

method. For example, given a DNN, every test of the DNN

has the same top-𝑘 neuron coverage rate [22]. As a result,

the coverage-total method becomes meaningless using this

coverage criterion.

• Third, for most of existing neuron coverage criteria, only a

few tests in a test set can achieve the maximum coverage

rate of the set. For example, using the top-𝑘 neuron cover-

age [22], we only need about 1% tests in a test set to achieve

the maximum coverage rate of the test set. In this case, the

coverage-additional method becomes useless because it stops

working after prioritizing the first 1% tests.

• Fourth, coverage-additional method usually takes very high

time complexity𝑂 (𝑚𝑛2), where𝑚 is the number of elements,

e.g., neurons, to cover and 𝑛 is the number of tests. Since 𝑛

and𝑚 are usually very large for a DNN, this method is not

scalable.

To overcome the aforementioned problems and effectively im-

prove the DNN quality, in this paper, we propose a test prioritiza-

tion technique called DeepGini, especially for image-classification

DNNs. DeepGini does not prioritize tests as conventional coverage-

based approaches but is based on a statistical perspective of DNN.

Such a statistical perspective allows us to reduce the problem of

measuring misclassification probability to the problem of measur-

ing set impurity [26]. Intuitively, a test is likely to be misclassified

by a DNN if the DNN outputs similar probabilities for each class.

Thus, this metric yields the maximum value when DNN outputs

the same probability for each class. For example, if a DNN outputs

a vector ⟨0.5, 0.5⟩, it means that the DNN is not confident about

its classification because the test has the same probability (i.e., 0.5)

to be classified into the two classes. In this case, the DNN is more

likely to make mistakes. In contrast, if the DNN outputs ⟨0.9, 0.1⟩, it
implies that the DNN is confident that the test should be classified

into the first class. Compared to the coverage-based approaches,

DeepGini has the following advantages:

• Tests are more distinguishable using our metric than existing

neuron coverage criteria. This is because it is not likely that

different tests have the same output vector but tests usually

have the same coverage rate as discussed above.

• It is not necessary for us to record a great deal of intermediate

information to compute coverage rate. We prioritize tests

only based on the output vector of a DNN. Since it is not

necessary for us to understand the internal structure of a

DNN, our approach is much easier to use. Meanwhile, it is

also more secure because we do not need to look into a DNN

and, thus, sensitive information in a DNN is protected.

• The time complexity of DeepGini is the samewith the coverage-

total approach but much less than the coverage-additional

approach. Thus, our approach is as scalable as coverage-total

approaches but muchmore scalable than coverage-additional

approaches.

• Tests prioritized at the front by DeepGini are more effective

to improve the DNN quality than those prioritized at the

back and those prioritized at the front but by coverage-based

prioritization techniques.

We notice that our approach requires to run all tests to obtain

the output vectors so that the likelihood of misclassification can be

calculated. However, we argue that this is not a significant weak-

ness. First, this issue is shared with all coverage-based prioritization

methods as they also need to run tests to obtain the coverage rates.

Second, the time cost to run a DNN is not time-consuming like train-

ing the DNN. Compared to the expensive cost of manually labeling

all tests in a messy order, the time cost is completely negligible.

We compare DeepGini with coverage-based methods using exist-

ing neuron coverage criteria. The effectiveness of our approach is

evaluated from two aspects. First, we compute the value of Average

Percentage of Fault-Detection (APFD) [46], which is a standard

method of evaluating prioritization techniques. Second, we evalu-

ate if our technique can improve the quality of DNN. To this end,

we add the tests prioritized at the front to the training set and

compare the accuracy of the re-trained DNN to the original one.

The experimental results demonstrate that DeepGini is close to the

optimal solution in terms of the value of APFD, and DeepGini is

also more effective to improve the DNN quality. In summary, we

make the following contributions in this paper:

• We propose an effective and efficient approach, DeepGini,

to prioritizing DNN tests.

• We demonstrate that tests prioritized at the front by Deep-

Gini are effective to improve the DNN quality.

• We show the weaknesses of neuron coverage criteria in test

prioritization and DNN enhancement.

The remainder of the paper is organized as follows. Section 2

introduces the background knowledge of deep learning and test

prioritization. Section 3 presents our approach to prioritizing tests

and its application to improving the DNN quality. Section 4 takes

us to the empirical study, in which we introduce the settings of

the evaluation. Section 5 discusses the experimental results, which

demonstrate the effectiveness and efficiency of our approach. Sec-

tion 6 surveys the related work and Section 7 concludes this paper.

178

DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks ISSTA ’20, July 18–22, 2020, Virtual Event, USA

monkey (0.94)

tiger (0.01)

cat (0.02)

dog (0.03)

input layer output layerhidden layers

Figure 1: An example to illustrate the DNN structure.

2 BACKGROUND
In this section, we introduce the basic knowledge of DNN and

conventional test prioritization techniques.

2.1 Deep Neural Networks
Classification deep neural networks (DNN) are the core of many

deep learning systems. As shown in Figure 1, a DNN consists of

multiple layers, i.e., an input layer, an output layer, and one or more

hidden layers. Each layer is made up of a series of neurons. The

neurons from different layers are interconnected by weighted edges.

Each neuron is a computing unit that applies an activation function

on its inputs and the weights of the incoming edges. The computed

result is passed to the next layer through the edges. The weights

of the edges are not specified directly by software developers, but

automatically learned by a training process with a large set of

labeled training data. After training, a DNN then can be used to

automatically classify an input object, e.g., an image with an animal,

into its corresponding class, e.g., the animal species.

Suppose we have a DNN that classifies objects into 𝑁 classes.

Given an input, the DNN will output a vector of 𝑁 values, e.g.,

⟨𝑣1, 𝑣2, · · · , 𝑣𝑁 ⟩, each of which represents how much the system

thinks the input corresponds to each class. Using a softmax func-

tion [9], it is easy to normalize this vector to ⟨𝑝1, 𝑝2, · · · , 𝑝𝑁 ⟩ where
Σ𝑁
𝑖=1

𝑝𝑖 = 1 and 𝑝𝑖 indicates the probability that an input belongs

to the ith class. From now on, with no loss of generality, we as-

sume that the output vector of a DNN is a vector of probabilities as

described above.

2.2 Neuron Coverage Criteria
To enhance the quality and robustness of DNNs, in the past decade,

software engineering researchers have proposed a series of neuron

coverage criteria specifically for DNN testing [15, 22, 25, 42]. In this

section, we survey the related papers published on peer reviewed

venues as follows.

Neuron Activation Coverage (NAC(𝑘)) [25]. NAC(𝑘) is pro-
posed based on the assumption that higher activation coverage

implies that more states of a DNN could be explored. The parame-

ter 𝑘 of this coverage criterion is defined by users and specifies how

a neuron in a DNN can be counted as covered. That is, if the output

of a neuron is larger than 𝑘 , then this neuron will be counted as

covered. The rate of NAC(𝑘) for a test is defined as the ratio of the

number of covered neurons to the total number of neurons.

𝑘-Multisection Neuron Coverage (KMNC(𝑘)) [22]. Suppose
that the output of a neuron 𝑜 is located in an interval [low𝑜 , high𝑜],
where low𝑜 and high𝑜 are recorded in the training process. To use

this coverage criterion, the interval [low𝑜 , high𝑜] is divided into

𝑘 equal sections, and the goal is to cover all the sections. We say

a section is covered by a test if and only if the neuron output is

located in the section when the DNN is run against the test. The

rate of KMNC(𝑘) for a test is defined as the ratio of the number of

covered sections to the total number of sections. Here, the total

number of sections is equal to 𝑘 times the total number of neurons.

In most cases, a single test must cover a section in [low𝑜 , high𝑜]
of each neuron. Only a tiny number of tests do not cover a sec-

tion in the interval, but cover the boundaries, i.e., (−∞, low𝑜] and
[high𝑜 , +∞). Thus, almost all single tests have the same coverage

rate of KMNC(𝑘).

Neuron Boundary Coverage (NBC(𝑘)) [22]. Different from
KMNC(𝑘), NBC(𝑘) does not aim to cover all sections in [low𝑜 , high𝑜].
Instead, it targets to cover the boundaries, i.e., (−∞, low𝑜] and

[high𝑜 , +∞). Using this coverage criterion, we can expect to cover

more corner cases. In practice, it is not necessary to directly use low𝑜

and high𝑜 as the boundaries. Instead, low𝑜 −𝑘𝜎 and high𝑜 +𝑘𝜎 can

be used. Here, 𝜎 is the standard deviation of the outputs of a neuron

recorded in the training process. 𝑘 is a user-defined parameter. The

rate of NBC(𝑘) for a test is defined as the ratio of the number of

covered boundaries to the total number of boundaries. Since each

neuron has one upper bound and one lower bound, the total number

of boundaries is twice the number of neurons.

StrongNeuronActivationCoverage (SNAC(𝑘)) [22]. SNAC(𝑘)
can be regarded as a special case of NBC(𝑘) as it only takes upper

boundary into consideration. Thus, it is defined as the ratio of the

number of covered upper boundaries to the total number of upper

boundaries, in which the latter is actually equal to the number of

neurons in a DNN.

Top-𝑘 Neuron Coverage (TKNC(𝑘)) [22]. TKNC(𝑘) measures

how many neurons have once been the most active 𝑘 neurons on

each layer. It is defined as the ratio of the total number of top-𝑘

neurons on each layer to the total number of neurons in a DNN.

We say a neuron is covered by a test if and only if when the DNN

is run against the test, the output of the neuron is larger than or

equal to the 𝑘th highest value in the layer of the neuron.

It is noteworthy that, according to this definition, this metric

only can be used to compare two test sets with more than one test.

For a single test, it always covers 𝑘 neurons in each layer of a DNN.

Thus, TKNC(𝑘) is always the same for two single tests and, thus,

cannot distinguish them.

Likelihood- andDistance-based SurpriseCoverage (LSC(𝑘)
and DSC(𝑘)) [15]. Surprise coverage relies on the concept of sur-

prise adequacy 𝑆𝐴(𝑥), which measures the dissimilarity between

a test 𝑥 and the training data set. The parameter 𝑘 here is a pair

(𝑛,𝑢). Given an upper bound 𝑢 and buckets 𝐵 = {𝑏1, 𝑏2, · · · , 𝑏𝑛}
that divides (0, 𝑢] into 𝑛 𝑆𝐴 segments, the surprise coverage rate

of a set 𝑋 of tests is defined as

𝑆𝐶 (𝑋) =
|{𝑏𝑖 |∃𝑥 ∈ 𝑋 : 𝑆𝐴(𝑥) ∈ (𝑢 ∗ 𝑖−1

𝑛 , 𝑢 ∗ 𝑖
𝑛]}|

𝑛

179

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen

LSC and DSC, two special types of surprise coverage, rely on

likelihood-based surprise adequacy (LSA) and distance-based sur-

prise adequacy (DSA), respectively. LSA uses kernel density es-

timation [41] to estimate the surprise adequacy while DSA uses

Euclidean distance. The details on the computation of DSA and LSA

are omitted and can be found in the original paper [15].

2.3 Coverage-Based Test Prioritization
In conventional software testing, test prioritization (a.k.a., test case

prioritization) is actually a classic problem defined by Rothermel et

al. [31] as following:

Test Prioritization. Given a test set𝑇 , the set 𝑃𝑇 of the permu-

tations of 𝑇 , and a function 𝑓 from 𝑃𝑇 to the real numbers, the test

prioritization problem is to find 𝑇 ′ ∈ 𝑃𝑇 such that

∀𝑇 ′′ ∈ 𝑃𝑇 \ {𝑇 ′} : 𝑓 (𝑇 ′) ≥ 𝑓 (𝑇 ′′).

Here, 𝑓 (𝑇 ′ ∈ 𝑃𝑇) yields an award value for a permutation.

In the past decades, many test prioritization techniques have

been proposed for conventional software. Most of these techniques

are based on various code coverage information and follow the

basic assumption that early maximization of coverage would lead to

early detection of faults [10]. Two main coverage-based techniques

are known as the coverage-total prioritization and the coverage-

additional prioritization [46].

Coverage-Total Method (CTM). A CTM is an implementation

of the “next best” strategy. It always selects the test with the highest

coverage rate, followed by the test with the second-highest coverage

rate, and so on. For tests with the same coverage rate, the method

will prioritize them randomly. For the example in Table 1, both

𝐴, 𝐵,𝐶, 𝐷 and 𝐴, 𝐵, 𝐷,𝐶 are valid results of CTM.

CTM is attractive because it is relatively efficient and easy to

implement. Given a set consisting of 𝑛 tests with their coverage

rates, CTM only needs to sort these tests according to their cov-

erage rates. Typically, using a quick sort algorithm, it only takes

𝑂 (𝑛 log𝑛) time [6].

Coverage-AdditionalMethod (CAM).CAMdiffers fromCTM

in that it selects the next test according to the feedback from pre-

vious selections. It iteratively selects a test that can cover more

uncovered code structures. In this manner, we can expect that we

can achieve the maximum coverage rate of a test set as soon as

possible. After the maximum coverage rate is achieved, we can

use CTM to prioritize the remaining unprioritized tests. For the

example in Table 1, 𝐴, 𝐷,𝐶, 𝐵 is the only valid result of CAM.

Given a program with𝑚 elements to cover and a set of 𝑛 tests,

every time we select a test, it will take 𝑂 (𝑚𝑛) time to re-adjust

the coverage information of the remaining tests. This process will

be performed 𝑂 (𝑛) times. Thus, the total time cost is 𝑂 (𝑚𝑛2). Ac-
cording to the time complexity, it is easy to find that CAM is less

scalable compared to CTM, especially when 𝑛 and𝑚 are very large.

3 APPROACH
Owing to the oracle problem discussed before, test prioritization

can help label and analyze as many misclassified tests as possible

in a limited time. However, due to the problems we argued in

Section 1 and as we will show in our evaluation, coverage-based

test prioritization becomes ineffective in the context of DNN testing.

Table 1: An example to illustrate coverage-based test priori-
tization. ‘X’ means a statement is covered by a test.

Test

Program Statement

1 2 3 4 5 6 7 8

𝐴 X X X X X X

𝐵 X X X X X

𝐶 X X X X

𝐷 X X X X

Therefore, we propose a test prioritization method that is not based

on neuron coverage criteria, but based on a statistical view of DNN

as discussed in Section 3.1. Such a statistical view inspires us to

propose a method, called DeepGini, to prioritize tests of a DNN,

which is presented in Section 3.2. Section 3.3 discusses how to

improve DNN quality with DeepGini.

3.1 A Statistical View of DNN
DNNs are specially good at classifying high-dimensional objects.

If we regard each output class of a DNN as a kind of feature of

the input object, the computation (or classification) process of a

DNN actually maps the original high-dimensional data to only a

few kinds of features. As an example, suppose the input of a DNN

is a 28x28 image with three channels (i.e., RGB channels). Then the

original dimension of the image is 3
28×28

. In Figure 1, the DNNmaps

the high-dimension object to a bag (or multi-set)
1 𝐵 of features, in

which 94% are features of monkey, 1% are features of tiger, 3% are

features of dog, and 2% are features of cat. Since most elements

in 𝐵 are features of monkey, we classify the input object into the

monkey class.

Generally, if the feature bag has the highest purity, i.e., contains

only one kind of features (e.g., 100% elements in 𝐵 are features

of monkey), then there will be no other features confusing our

classification and it is more likely that a test input is correctly

classified. As an example, in Figure 2, Bag 2 has higher purity than

Bag 1. Intuitively, this is because almost all elements in Bag 2 are

triangles while Bag 1 has the same number of triangles and circles.

Statistically, if a bag has higher purity, the results of two random

samplings in the bag have higher probability to be the same. In

contrast, if a bag has lower purity, the results of two random sam-

plings in the bag are more likely to be different. For the example in

Figure 2, using sampling with replacement,
2
the probability that

two random samplings have the same shape is 0.52 + 0.52 = 0.5 and

0.12 + 0.92 = 0.82 for Bag 1 and Bag 2, respectively.

Formally, assuming the feature distribution in the feature bag

output by a DNN is ⟨𝑝1, 𝑝2, · · · , 𝑝𝑁 ⟩, we can compute the probabil-

ity that two random samplings have different results as 1 − Σ𝑁
𝑖=1

𝑝2
𝑖
.

The lower the probability, the higher the purity and, thus, the more

likely a test input of a DNN is correctly classified.

On the statistical view, we can observe that the problem of mea-

suring the likelihood of misclassification actually has been reduced

1
A multi-set or a bag is a special kind of set that allows duplicate elements.

2
In sampling with replacement, after we sample a feature from the feature bag, the

feature is put back to the bag so that we have the same probability to get the feature

next time.

180

DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Bag 1 Bag 2

Figure 2: Bag 2 has higher purity than Bag 1. Bag 1 has 50%
triangles and 50% circles. Bag 2 has 90% triangles and 10%
circles.

to the problem of measuring the purity of a bag. In fact, such a

reduction follows the very spirit of the measurement of Gini impu-

rity [26], which inspires us to propose DeepGini for measuring the

likelihood of misclassification.

3.2 DeepGini: Prioritizing Tests of a DNN
Formally, the metric we use to measure the likelihood of misclassi-

fication is defined as below.

Definition 3.1. Given a test 𝑡 and aDNN that outputs ⟨𝑝𝑡,1, 𝑝𝑡,2, · · · ,
𝑝𝑡,𝑁 ⟩ (Σ𝑁

𝑖=1
𝑝𝑡,𝑖 = 1), we define 𝜉 (𝑡) to measure the likelihood of 𝑡

being misclassified:

𝜉 (𝑡) = 1 − Σ𝑁𝑖=1𝑝
2

𝑡,𝑖

In the definition, 𝑝𝑡,𝑖 is the probability that the test 𝑡 belongs to

the class 𝑖 . Figure 3 illustrates the distribution of 𝜉 when the DNN

performs a binary classification. The distribution illustrates that

when DNN outputs the same probability for the two classes, 𝜉 has

the maximum value, indicating that we have high probability to

incorrectly classify the input test. This result follows our intuition

that a test is likely to be misclassified if the DNN outputs similar

probabilities for each class, and the rationality of the result has

been explained in the previous subsection. The following theorem

demonstrates that even though a DNN classifies input tests into

more than two classes, 𝜉 has a similar distribution as that in Figure 3.

Theorem 3.2. 𝜉 (𝑡) has the unique maximum if and only if ∀1 ≤
𝑖, 𝑗 ≤ 𝑁 : 𝑝𝑡,𝑖 = 𝑝𝑡, 𝑗 .

Proof. According to Lagrangian multiplier method [28], let

𝐿(𝑝𝑡,𝑖 , 𝜆) = 𝜉 (𝑡) + 𝜆 × (Σ𝑁𝑖=1𝑝𝑡,𝑖 − 1)
∀𝑝𝑡,𝑖 , let

𝜕𝐿

𝜕𝑝𝑡,1
= −2𝑝𝑡,1 + 𝜆 = 0

𝜕𝐿

𝜕𝑝𝑡,2
= −2𝑝𝑡,2 + 𝜆 = 0

.

.

.

𝜕𝐿

𝜕𝑝𝑡,𝑁
= −2𝑝𝑡,𝑁 + 𝜆 = 0

If we calculate the difference of any two above equations (e.g.

the 𝑖th and 𝑗th equation), we will have

2𝑝𝑡,𝑖 − 2𝑝𝑡, 𝑗 = 0 ⇒ 𝑝𝑡,𝑖 = 𝑝𝑡, 𝑗

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Distribution of 𝜉 for 2-class problem. X-Axis: the
probability that a test input belongs to one of the two classes.
Y-Axis: the value of 𝜉 .

Hence, when 𝑝𝑡,1 = 𝑝𝑡,2 = · · · = 𝑝𝑡,𝑁 = 1/𝑁 , 𝜉 (𝑡) has the unique
extremum.

At the point (𝑝𝑡,1, 𝑝𝑡,2, · · · , 𝑝𝑡,𝑁), the Hessian matrix [1] of 𝜉 is
−2 0 . . . 0

0 −2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . −2

which is a negative definite matrix. This implies that the unique

extremum must be the unique maximum [1].

□

We notice that many other metrics such as information en-

tropy [33] also have the above property and is almost equivalent to

𝜉 [27]. The difference is that it may require a non-statistical view,

e.g., the perspective of information theory, to explain the rationality.

In addition, we believe that the simplest is the best: the complexity

of computing quadratic sum is much easier than that of computing

entropy-like metrics because they require logarithmic computation.

According to the above discussion, 𝜉 (𝑡1) > 𝜉 (𝑡2) implies that 𝑡1
is more likely to be misclassified. Hence, to prioritize 𝑛 tests in a

set, we need to run the tests to collect the outputs, and then sort

these tests 𝑡𝑖 according to the value of 𝜉 .

We argue that the time cost of running the tests is negligible.

First, the time cost to run a DNN is not time-consuming like training

the DNN. Compared to the expensive cost of manually labeling

all tests in a messy order, the time cost is completely negligible.

Second, this issue is shared with all neuron-coverage-based test

prioritization methods as they also need to to run tests to obtain

the coverage rates.

Example 3.3. Assume that we have four tests 𝐴, 𝐵,𝐶 , and 𝐷 as

well as a DNN tries to classify them into three classes. Table 2 shows

their output vectors and the values of 𝜉 . According to the values

of 𝜉 , we can prioritize the tests as 𝐷,𝐴,𝐶 , and 𝐵. 𝐷 has the highest

probability to be misclassified because the DNN outputs the most

similar probabilities for each of the three classes. In comparison,

for 𝐵 and𝐶 , the DNN is more confident about their classes as 𝐵 has

the probability of 0.8 to be classified into the third class and 𝐶 has

the probability of 0.6 to be classified into the first class.

Typically, in our prioritization method, we can simply use a

quick sort algorithm to sort tests. This algorithm takes 𝑂 (𝑛 log𝑛)
time complexity. Compared to CTM and CAM, our approach has

following merits:

181

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen

Table 2: An example to show howDeepGini prioritizes tests.

Test Output of DNN 𝜉

𝐴 ⟨0.3, 0.5, 0.2⟩ 0.62

𝐵 ⟨0.1, 0.1, 0.8⟩ 0.34

𝐶 ⟨0.6, 0.3, 0.1⟩ 0.54

𝐷 ⟨0.4, 0.4, 0.2⟩ 0.64

• The time complexity of our approach is the same with CTM

and is much lower than CAM (𝑂 (𝑚𝑛2)). Thus, our approach
is as scalable as CTM and much more scalable than CAM.

• Different fromCTM and CAM,we only need to record output

vectors while CTM and CAM require us to profile the whole

DNN to record coverage information. Thus, our approach

has less interference with the DNN.

3.3 Enhancing DNN with DeepGini
Generally, we can add more tests to the training set and retrain

the DNN to enhance its robustness. In face of a large number of

unlabeled tests and a limited time budget, we cannot label all tests

and use them to retrain the DNN. DeepGini allows us to find and

label as many misclassified tests as possible in a limited time budget.

We observe that the tests prioritized by DeepGini at the front are

more effective to improve DNN quality than the tests prioritized at

the back. Meanwhile, our empirical study shows that tests priori-

tized by DeepGini at the front are more effective to improve DNN

quality than the tests prioritized at the front but by coverage-based

prioritization techniques.

The principle behind the effectiveness of DeepGini actually fol-

lows the theory of active machine learning, which prefers the tests

near the decision boundary (i.e., tests that the DNN is least cer-

tain how to label or, equivalently, tests that have the highest value

of 𝜉 (𝑡)) to actively enhance a deep learning system. We omit the

details of active learning here because it is not our contribution.

Interested readers can refer to the literature [32] for more details.

To sum up, DeepGini provides not only a test prioritization

method but also a technique to enhance the robustness of DNN in

a limited time budget.

4 EXPERIMENT DESIGN
In this section, we introduce the experimental setup, including

the datasets and DNN models we used, approaches to generating

adversarial tests, the baseline approaches we compared with, and

the research questions we study in the experiments. To conduct

the experiments, we implement our approach as well as various

neuron-coverage-based test prioritization methods upon Keras 2.1.3

with TensorFlow 1.5.0.
3,4

All of our implementation can be accessed

via: https://github.com/deepgini/deepgini. All experiments were

performed on a Ubuntu 16.04.5 LTS server with one NVIDIA GTX

1080Ti GPU, two 12-core processors “Intel(R) Core(TM) i7-6850K

CPU @ 3.60GHz”, and 64GB physical memory.

3
https://faroit.github.io/keras-docs/2.1.3/

4
https://github.com/tensorflow/tensorflow/releases

4.1 Datasets and DNN Models
As shown in Table 3, for evaluation, we select four popular publicly-

available datasets, i.e., MNIST,
5
CIFAR-10,

6
Fashion,

7
and SVHN.

8

The MNIST dataset is for handwritten digits recognition, con-

taining 70,000 input data in total, of which 60,000 are training data

and 10,000 are test data.

The CIFAR-10 dataset consists of 60,000 32x32 colour images in

10 classes, with 6,000 images per class. There are 50,000 training

images and 10,000 test images.

Fashion is a dataset of Zalando’s article images consisting of a

training set of 60,000 examples and a test set of 10,000 examples.

Each example is a 28x28 gray-scale image, associated with a label

from 10 classes.

SVHN is a real-world image dataset that can be seen as similar

in flavor to MNIST (e.g., the images are of small cropped digits), but

incorporates an order of magnitude more labeled data (over 600,000

digit images).

To demonstrate the generalizability of our approach, for every

data sets, we use two prevalent DNN models in our evaluation. The

size of these DNNmodels ranges from tens to thousands of neurons,

exhibiting the diversity of the DNN models to some degree.

4.2 Adversarial Test Input Generation.
In addition to prioritizing original tests in the datasets, we also

conduct an experiment to prioritize adversarial tests. As the pre-

vious study [22], we use four state-of-the-art methods to generate

adversarial tests, including FGSM [11], BIM [19], JSMA [24], and

CW [5]. These techniques generate tests through different minor

perturbations on a given test input. Table 3 shows the total number

of adversarial tests generated by these methods in 12 hours.

4.3 Baseline Approaches
We compare our approach to coverage-based methods that use

eleven different neuron coverage criteria as introduced in Section 2.

Since these neuron coverage criteria contain configurable parame-

ters, as shown in Table 4, we use various parameters as suggested

by their original authors.

Each comparison experiment is conducted in four modes with

regard to two aspects: (1) using CTM or CAM to prioritize tests;

and (2) prioritizing tests in the original datasets or prioritizing tests

that combine the original tests and the adversarial tests.

4.4 Research Questions
DeepGini is designed for facilitating the testers of DNN-based sys-

tems to quickly identify misclassified tests and effectively enhance

the robustness. Based on this goal, we empirically explore the fol-

lowing three research questions (RQ).

RQ1. Effectiveness: Can DeepGini find a better permutation

of tests than neuron-coverage-based methods?

We provide answers to RQ1 by computing the values of Average

Percentage of Fault-Detection (APFD) metric [46]. Higher APFD val-

ues denote faster misclassification-detection rates. When plotting

5
http://yann.lecun.com/exdb/mnist/

6
https://www.cs.toronto.edu/~kriz/cifar.html

7
https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/

8
http://ufldl.stanford.edu/housenumbers/

182

https://github.com/deepgini/deepgini
https://faroit.github.io/keras-docs/2.1.3/
https://github.com/tensorflow/tensorflow/releases
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
http://ufldl.stanford.edu/housenumbers/

DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 3: Datasets and DNN models.

Dataset Description DNN Model #Neurons #Layers # Original Tests # Adversarial Tests

MNIST Digits 0∼9 LeNet-1 42 5

10,000

39,854

LeNet-5 258 7 39,705

CIFAR-10 Images with 10 classes

ResNet-20 698 20

10,000

40,000

VGG-16 7242 21 8,000

Fashion Zalando’s article images

LeNet-1 42 5

10,000

39,992

ResNet-20 698 20 39,905

SVHN Street view house numbers

LeNet-5 258 7

26,032

104,037

VGG-16 7242 21 8,000

Table 4: Configuration parameters for the coverage criteria.

ID Criteria Configuration Parameter 𝑘

1 NAC(𝑘) 0 0.75 -

2 KMNC(𝑘) 1,000 10,000 -

3 NBC(𝑘) 0 0.5 1

4 SNAC(𝑘) 0 0.5 1

5 TKNC(𝑘) 1 2 3

6 LSC(𝑘) (1000, 100) - -

7 DSC(𝑘) (1000, 2) - -

the percentage of detected misclassified tests against the number

of prioritized tests, APFD can be calculated as the area below the

plotted line. It is also noteworthy that although an APFD value

ranges from 0 to 1, an APFD value not close to 1 does not mean

that the prioritization is ineffective. This is mainly because the the-

oretically maximal APFD value is usually much smaller than 1 [46].

Formally, for a permutation of 𝑛 tests in which there are 𝑘 tests will

be misclassified, let 𝑜𝑖 be the order of the first test that reveals the

𝑖th misclassified test. The APFD value for this permutation can be

calculated as following:

𝐴𝑃𝐹𝐷 = 1 −
Σ𝑘
𝑖=1

𝑜𝑖

𝑘𝑛
+ 1

2𝑛

To be clear, assuming the theoretical minimum and maximum of the

APFD value is min and max, respectively, we normalize the APFD

value from [min,max] to [0, 1] so that a prioritization method is

better if the APFD value is closer to 1 and is worse if the APFD

value is closer to 0.

RQ2. Efficiency: Is DeepGinimore efficient than neuron-coverage-

based methods?

We provide answers to RQ2 by recording the time cost of priori-

tization. A prioritization method may be very costly because the

number of tests is usually very large for a DNN system. According

to our evaluation, some prioritization methods cannot finish in

several hours, which is not practical in an industrial setting.

RQ3. Guidance: Can DeepGini guide the retraining of an DNN

to improve its accuracy?

Since the DNNs already have very high accuracy on the original

tests (> 90% or even > 95%), we cannot clearly show the accuracy

improvement of these DNNs. Thus, we leverage the adversarial tests

to answer RQ3. For each model, we evenly partition adversarial

test set into a testing set 𝑇 and a validation set 𝑉 for the following

experiment.

After prioritizing the tests in 𝑇 , we add back the first 1%, 2%,

· · · , 10% tests into the training set and retrain a new DNN. We do

not add more than 50% tests to retrain a DNN because we observe

that the accuracy of the DNN will not significantly change with

more tests. Using the validation set 𝑉 , we compute the accuracy

of the new DNN. We repeat the experiment using DeepGini and

other coverage metrics and compare the accuracy of the retrained

DNNs. According to the experimental results, we answer RQ3 that

DeepGini can provide guidance for more effective retraining against

the coverage-based methods.

5 RESULT ANALYSIS
In this section, we present the results of test prioritization (RQ1

and RQ2) and then analyze whether our approach can better guide

the retraining of DNNs (RQ3). Due to the page limit, we cannot

present all results in detail. All other results show similar trends

and are available online: https://github.com/deepgini/deepgini.

5.1 Effectiveness and Efficiency (RQ1 & RQ2)
Table 5 lists the results of the LeNet5 net on the MNIST dataset as

an example. We summarize our findings in Table 7 and discuss them

at the end of this subsection. Based on the feature of these criteria,

we compare the results of DeepGini with existing coverage-based

methods in two groups: (1) NAC, NBC, and SNAC; (2) TKNC, LSC,

DSC, and KMNC.

5.1.1 Comparing with NAC, NBC, and SNAC. As shown in Table 5,

DeepGini is capable of prioritizing tens of thousands of tests within

2 seconds. The APFD value of DeepGini is very close to 1, which

implies that our approach is very close to the theoretically best

approach. Table 5 also shows that fewer than 0.5% of tests are suffi-

cient to achieve the maximum coverage rate of the three coverage

criteria: NAC, NBC, and SNAC, regardless of their parameter set-

tings. In the 10,000 original tests of MNIST, a very small amount

of tests are sufficient for achieving the maximum coverage rate:

for NAC(0.75), 22 tests can reach the maximum coverage (84%); for

NBC(0.5), 5 tests can reach the maximum coverage (0.97%); and for

SNAC(0.5), 5 tests can reach the maximum coverage (2%). Since

we achieve the maximum coverage rate very quickly, CAM will

degenerate into CTM very quickly. Thus, the effectiveness and the

efficiency of CAM are almost the same as CTM for these datasets.

183

https://github.com/deepgini/deepgini

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen

Table 5: Results of Prioritization (MNIST with LeNet5)

Metrics Param.
Original Tests Original Tests + Adv

Max Cov. CTM CAM Max Cov. CTM CAM

% # Time (s) APFD Time (s) APFD % # Time (s) APFD Time (s) APFD

NAC

0 100 1 2 0.638 2 0.638 100 1 11 0.340 11 0.340

0.75 84 22 2 0.385 4 0.384 86 21 11 0.307 16 0.307

NBC

0 8 38 3 0.638 9 0.638 15 56 14 0.339 40 0.339

0.5 0.97 5 2 0.638 5 0.637 3 11 13 0.400 20 0.400

1 0.39 3 3 0.638 6 0.637 2 7 13 0.400 20 0.400

SNAC

0 14 35 3 0.639 9 0.639 22 48 13 0.340 31 0.340

0.5 2 5 3 0.639 7 0.639 7 11 13 0.340 22 0.340

1 0.78 3 3 0.638 8 0.638 4 7 13 0.340 20 0.340

TKNC

1 66 86 N/A N/A 11 0.023 74 96 N/A N/A 59 0.001

2 73 67 N/A N/A 10 0.023 79 70 N/A N/A 48 0.001

3 76 57 N/A N/A 10 0.023 81 55 N/A N/A 43 0.001

LSC (1000, 100) 22 220 N/A N/A 9 0.658 98 982 N/A N/A 36 0.503

DSC (1000, 2) 53 531 N/A N/A 1177 0.658 97 974 N/A N/A 4738 0.490

KMNC

1000 63 8814 N/A N/A 34045 0.599 T/O T/O N/A N/A T/O T/O

10000 T/O T/O N/A N/A T/O T/O T/O T/O N/A N/A T/O T/O

DeepGini N/A N/A N/A N/A N/A 0.45 0.984 N/A N/A N/A N/A 2 0.991
Max Cov.: The maximum coverage rate of the tests (%) and the number of tests to achieve the rate (#).

N/A: Not applicable in theory; T/O: Time out, i.e., cannot get result after running for 12 hours.

Effectiveness. Using MNIST as an example, Figure 4 plots the

number of detected misclassified tests against the prioritized tests.

We have two observations from this figure. First, DeepGini achieves

a higher APFD value in comparison to NAC, NBC, and SNAC. Sec-

ond, as illustrated by the dotted lines in Figure 4, neuron-coverage-

based prioritization methods, sometimes, are even worse than the

random prioritization strategy.

Efficiency. Table 5 shows that, for the original test sets, the

CAM-based prioritization processes of NAC, NBC, and SNAC cost

at least 2, 5, 7 seconds respectively, while DeepGini costs only 0.45

seconds. Similarly, for the test set with the adversarial examples, we

observe that the CAM-based prioritization processes of the three

baselines cost more than 11 seconds, while DeepGini costs only 2

seconds. This data shows that DeepGini has a higher efficiency in

comparison with NAC, NBC, and SNAC.

5.1.2 Comparing with TKNC, LSC, DSC, and KMNC. As discussed
in Section 2.2, every single test has the same coverage rate of TKNC,

LSC, and DSC, regardless of its parameter 𝑘 . Thus, CTM does not

work if we use these coverage metrics to prioritize tests. Unfor-

tunately, CAM does not work well using these coverage metrics

either. The main reason is that fewer than 5% of tests are enough to

achieve the maximal coverage rate. After prioritizing the 5% tests,

CAM is degenerate into CTM, which does not work as explained

above.

Similarly, CTM does not work if we use KMNC to prioritize

tests, because almost all single tests have the same coverage rate

of KMNC, regardless of its parameter 𝑘 . However, KMNC can

work with the CAM prioritization method. Thus, we only com-

pare KMNC-based CAM with our prioritization method.

Effectiveness. In the example of LeNet-5 on MNIST, Figure 4

plots the prioritization results, in which the curve of our method

goes up far more quickly than the four baseline methods. In the

original test set, while DeepGini has obtained the APFD value of

0.984, TKNC, LSC, DSC, and KMNC only obtain 0.023, 0.658, 0.658,

and 0.599. We can observe similar trends for the test set with adver-

sarial examples. This result implies that the DeepGini significantly

outperforms the four baselines regarding the effectiveness of prior-

itizing tests.

Efficiency. Table 5 shows that prioritization methods based on

these coverage metrics are 20×-2000× slower than our method. One

special case is KMNC-based CAM method. When prioritizing tests

using KMNC-based CAM method, we observe serious efficiency

issues. That is because the time complexity of KMNC-based CAM

method is very high, we cannot finish prioritizing tests in an accept-

able time budget. For MNIST, we cannot succeed in prioritizing tests

using the method in 12 hours. Considering MNIST is a relatively

small dataset, the efficiency problem would be the bottleneck of

applying KMNC-based CAM method in practice.

5.2 Guidance (RQ3)
Figure 5 illustrates the experimental results for RQ3. Like the pre-

vious experiments, we put the coverage metrics into two groups.

Figure 5-a and Figure 5-b demonstrate the results of LeNet-5 on

MNIST. The curves show the accuracy of the DNN after retraining

with 1%, 2%, ..., 10% tests. As we introduced in Section 4.4, the test-

ing set 𝑇 and validation set 𝑉 is divided from the adversarial test

data. This setting makes initial accuracy of the DNN are the same

for all metrics, i.e., it is 0 without retraining. Note that, because

184

DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks ISSTA ’20, July 18–22, 2020, Virtual Event, USA

ra
nd
om

ra
nd
om

(a)

ra
nd
om

ra
nd
om

(b)

Figure 4: Test prioritization for MNIST with LeNet5. X-Axis: the percentage of prioritized tests (sub-figure a), or percentage of
both original and adversarial tests (sub-figure b); Y-Axis: the percentage of detected misclassified tests.

Table 6: The DNNs’ accuracy value after retraining with first 10% prioritized tests.

MNIST CIFAR-10 FASHION SVHN

Avg
LeNet-1 LeNet-5 ResNet-20 VGG-16 LeNet-1 ResNet-20 LeNet-5 VGG-16

NAC(0.75)-CTM 0.89 0.93 0.93 0.79 0.81 0.91 0.82 0.67 0.84

NAC(0.75)-CAM 0.83 0.85 0.92 0.76 0.78 0.94 0.8 0.74 0.83

NBC(0)-CAM 0.84 0.88 0.92 0.78 0.77 0.94 0.81 0.75 0.84

NBC(0)-CTM 0.91 0.84 0.93 0.75 0.81 0.95 0.82 0.75 0.85

SNAC(0)-CTM 0.84 0.84 0.93 0.79 0.83 0.95 0.82 0.75 0.84

SNAC(0)-CAM 0.82 0.87 0.91 0.76 0.79 0.94 0.81 0.76 0.83

LSC(1000, 100)-CAM 0.84 0.86 0.92 0.81 0.8 0.94 0.81 0.74 0.84

DSC(1000, 100)-CAM 0.84 87 0.92 0.82 0.81 0.94 0.82 0.75 0.85

TKNC(1)-CAM 0.83 0.88 0.92 0.8 0.78 0.94 0.81 0.8 0.85

DeepGini 0.99 1 0.98 0.93 0.89 0.98 0.93 0.97 0.96

KMNC-based prioritization technique is not scalable, we cannot

finish the experiment of RQ3 in 12 hours.

The curves show that retraining with the tests prioritized by

DeepGini is more effective in improving the accuracy of DNNs.

This outperformance is clear in the retraining with all sizes of

the test sets. We also present the accuracy value after retraining

the DNN with the first 10% prioritized tests in Table 6. From the

table, we can observe that the outperformance can be found across

all combinations of datasets and DNN models. In average, while

the baseline criteria can reach 0.83 — 0.85 accuracy, DeepGini can

improve the accuracy value to 0.96, which is close to 1.

185

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen

1 2 3 4 5 6 7 8 9 10

percentage of test cases

0.70

0.75

0.80

0.85

0.90

0.95

1.00

a
c
c

mnist_LeNet5

(a)

1 2 3 4 5 6 7 8 9 10

percentage of test cases

0.70

0.75

0.80

0.85

0.90

0.95

1.00

a
c
c

mnist_LeNet5

(b)

Figure 5: Enhancing the robustness of the DNN with priori-
tized tests (MNIST with LeNet-5).

5.3 Discussion
For each of these existing neural coverage based criteria, we summa-

rize our findings in Table 7. Although structural coverage criteria

are very effective in classic testing methods, they are not effective

in the new scenario of DNN testing. More specifically, for some

of these criteria, we observe that a very small part, around 1% to

5%, of original tests are sufficient to achieve the maximal coverage.

For some of these criteria, the coverage criteria cannot distinguish

different tests. These results extend the existing discussion on the

effectiveness of structural coverage [21] – some researchers cast

doubts on the effectiveness of neuron-coverage-guided test gen-

eration techniques. For instance, in our experiment, the random

prioritization strategy even outperforms NAC and TKNC, which

implies that these coverage criteria could be misleading in finding

new incorrect DNN behaviors.

Further, DeepGini is designed based on the assumption that

the test produces similar probabilities for all classes has a higher

probability of being misclassified. Admittedly, this assumption is

not necessarily true. There could be some variance/difference in the

probabilities of the different classes, yet a wrong class may be given

a higher probability than the expected class. However, the results

of RQ1 shows the APFD value of DeepGini is higher than baselines,

which indicates that it can efficiently detect a large number (but

not all) of misclassified tests in comparison with baselines.

On the other hand, test prioritization should be scalable and effi-

cient so that it can be applied in the scenario of DNN testing. Such

scalability and efficiency requirement are very necessary because

the number of tests is usually very large in DNN testing, which

is different from conventional software testing. For instance, we

found that the KMNC criteria failed to work well regarding both

the effectiveness and efficiency. In the future, more research should

be conducted to investigate its potential and improvement. Consid-

ering MNIST is a very basic dataset for deep learning, we suggest

software engineers do not apply these criteria in their engineering

practice before they are improved.

6 RELATEDWORK
We discuss the related work in two groups: (1) test prioritization

methods for conventional software and (2) testing techniques for

deep learning systems.

6.1 Test Prioritization Techniques
Test prioritization seeks to find the ideal ordering of tests, so that

software testers or developers can obtain maximal benefit in a

limited time budget. The idea was first mentioned by Wong et

al. [44] and then the technique was proposed by Harrold and Rother-

mel [12, 29] in a more general context. We observe that such an idea

from the area of software engineering can significantly reduce the

effort of labeling for deep learning systems. This is mainly because

a deep learning system usually has a large number of unlabeled

tests but developers only have limited time for labeling.

Coverage-based test prioritization, such as the CAM and CTM

methods studied in this paper, is one of the most commonly studied

prioritization techniques. In conventional software engineering,

we can obtain a new prioritization method when a different cover-

age criterion is applied. Rothermel et al. [30, 31] reported empirical

studies of several coverage-based approaches, driven by branch cov-

erage, statement coverage, and so-called FEP, a coverage criterion

inspired by mutation testing [3]. In addition, Jones and Harrold [14]

reported that MC/DC, a stricter form of branch coverage, is also

applicable to coverage-based test prioritization. Different from the

above techniques, we focus on testing and debugging for deep learn-

ing systems. Thus, we studied test prioritization based on coverage

criteria that specially proposed for DNNs. Our study demonstrated

that, using these coverage criteria, coverage-based test prioritiza-

tion is not effective and efficient. Sometimes, its effectiveness is

even worse than random prioritization. Instead, our approach uses

a simple metric that does not require to profile the DNNs but is

effective and also efficient.

We notice that, in software engineering, there are also many

prioritization techniques based on metrics other than coverage

criteria, including distribution-based approach [20], human-based

approach [40, 47], history-based approach [34], model-based ap-

proach [16–18], and so on. These techniques are specially-designed

for conventional software systems instead of deep learning systems.

186

DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 7: Summary of Our Findings on Test Prioritization

Metrics Findings

NAC/NBC/SNAC

1. CAM will quickly degenerate into CTM for these metrics because only a small number of tests can achieve the maximum coverage.

2. CTM is not effective and even worse than random prioritization when we use these metrics.

TKNC/LSC/DSC

3. CAM will quickly degenerate into CTM for TKNC/LSC/DSC because only a small number of tests can achieve the maximum

coverage rate.

4. CTM does not work when TKNC/LSC/DSC are used because all single tests have the same coverage rate.

5. Computing LSC/DSC additionally relies on the training set.

KMNC

6. CAM is not scalable due to its high complexity when KMNC is used.

7. CTM does not work when KMNC is used because almost all single tests have the same coverage rate.

DeepGini
8. DeepGini is the most effective and efficient metric for test prioritization regarding the APFD value and the time cost.

9. DeepGini does not relies on anything except for the tests and the DNN to test.

Making them applicable to deep learning systems may require non-

trivial efforts of re-design. We leave them as our future work.

6.2 Testing Deep Learning Systems
In conventional practice, machine learning models were mainly

evaluated using available validation datasets [43]. However, these

datasets usually cannot cover various corner cases that may induce

unexpected behaviors [25, 39]. To further ensure the quality of a

deep learning system, software-engineering researchers have de-

signedmany testing approaches. Pei et al. [25] proposedDeepXplore,
the first white-box testing framework, to identify and generate the

corner-case inputs that may induce different behaviors over multi-

ple DNNs. Ma et al. [23] presented a mutation testing framework

for DNNs aiming at evaluating the quality of datasets. Tian et

al. [39] presented DeepTest to generate test inputs by maximizing

the numbers of activated neurons via a basic set of image transfor-

mations. Zhang et al. [49] employed generative adversarial network

to transform the driving scenes into various weather conditions,

which increases the diversity of datasets. Different from the above

techniques that rely on solid test oracle, our method focuses on

the problem that we usually have a large number of tests without

test oracle. We observe that the idea of test prioritization can en-

able developers to obtain as many misclassified tests as possible

in a limited time budget, thereby easing the burden of labeling.

However, in comparison with traditional software programs, the

modern DNNs often consist of millions of neurons and hundreds of

layers, which naturally enlarges its potential testing space. While

the sophisticated internal logic of a DNN makes it challenging to

adopt the idea of coverage criteria to test prioritization, this paper

introduces a new metric that only analyzes the output space of a

DNN and is able to effectively guide the test prioritization. We no-

tice that researchers have proposed some preliminary prioritization

methods for testing DNNs [4, 48]. They use different methods to

prioritize the tests but failed to compare their techniques with clas-

sic coverage-based methods. Furthermore, they did not provide any

information on the capability of enhancing the DNN robustness.

To guide the testing techniques for DNNs, Pei et al. [25] intro-

duced neuron activation coverage to measure the differences of the

execution of test data. Ma et al. [22] designed a set of multi-level

and multi-granularity testing criteria for assessing the quality of

testing of deep learning systems. Our approach has shown that it is

not effective or efficient to prioritize tests based on these coverage

criteria. Sun et al. [37, 38] presented a concolic testing framework

that incrementally generates a set of test inputs to improve coverage

by alternating between concrete execution and symbolic analysis.

The MC/DC-like coverage criteria proposed in the paper [37, 38]

does not work for prioritization because of two reasons. First, since

we need at least a pair of tests to compute the coverage rate, the

coverage rate of a single test is meaningless. Thus, CTM does not

work. Second, computing the coverage rate is of at least quadratic

complexity. Thus, it is not scalable, just like the KMNC coverage

shown in our evaluation. Since we only focus on coverage criteria

published in peer-reviewed venues, these MC/DC-like metrics are

not included but just briefly discussed here. Different from such

test generation techniques that also have the oracle problem, our

approach attempts to prioritize tests so that the oracle problem is

alleviated.

7 CONCLUSION
Based on a statistical view of DNN, we have introduced an ap-

proach, namely DeepGini, to prioritizing testing data so that we

can improve the quality of DNN efficiently. Experimental results

demonstrate that it is more effective and efficient than coverage-

based methods. In real-world scenario, tests usually do not have

labels and we have to invest a lot of manpower to label them. With

such a prioritization method in hand, we can achieve maximal bene-

fit, even the labeling process is prematurely halted at some arbitrary

point due to resource limits.

ACKNOWLEDGEMENTS
We would like to thank anonymous reviewers for their insightful

comments. This project was partially funded by the National Natu-

ral Science Foundation of China under Grant Nos. 61832009 and

61932012. Qingkai Shi is the corresponding author.

REFERENCES
[1] Ken Binmore and Joan Davies. 2002. Calculus: concepts and methods. Cambridge

University Press.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[3] Timothy Alan Budd. 1981. Mutation Analysis of Program Test Data. (1981).

[4] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and

Darren Cofer. 2019. Input prioritization for testing neural networks. In 2019 IEEE
International Conference On Artificial Intelligence Testing (AITest). IEEE, 63–70.

187

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen

[5] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness

of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
39–57.

[6] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

Introduction to algorithms. MIT press.

[7] Alex Davies. [n. d.]. Tesla’s Latest Autopilot Death Looks Just Like a Prior Crash.

Available at https://www.wired.com/story/teslas-latest-autopilot-death-looks-

like-prior-crash/ (2020/01/27). ([n. d.]).

[8] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[9] John S Denker and Yann Lecun. 1991. Transforming neural-net output levels to

probability distributions. In Advances in neural information processing systems.
853–859.

[10] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2013.

Coverage-based test case prioritisation: An industrial case study. In Software
Testing, Verification and Validation (ICST), 2013 IEEE Sixth International Conference
on. IEEE, 302–311.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining

and Harnessing Adversarial Examples. In Proceedings of 2015 3rd International
Conference on Learning Representations (ICLR).

[12] Mary Jean Harrold. 1999. Testing evolving software. Journal of Systems and
Software 47, 2-3 (1999), 173–181.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] James A Jones and Mary Jean Harrold. 2003. Test-suite reduction and prioriti-

zation for modified condition/decision coverage. IEEE Transactions on software
Engineering 29, 3 (2003), 195–209.

[15] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-

ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19). IEEE Press, 1039–1049.

[16] Bogdan Korel, George Koutsogiannakis, and Luay H Tahat. 2007. Model-based

test prioritization heuristic methods and their evaluation. In Proceedings of the
3rd international workshop on Advances in model-based testing. ACM, 34–43.

[17] Bogdan Korel, George Koutsogiannakis, and Luay H Tahat. 2008. Application of

system models in regression test suite prioritization. In Software Maintenance,
2008. ICSM 2008. IEEE International Conference on. IEEE, 247–256.

[18] Bogdan Korel, Luay Ho Tahat, and Mark Harman. 2005. Test prioritization using

system models. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st
IEEE International Conference on. IEEE, 559–568.

[19] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial Examples

in the Physical World. In Proceedings of 2017 5th International Conference on
Learning Representations (ICLR).

[20] David Leon and Andy Podgurski. 2003. A comparison of coverage-based and

distribution-based techniques for filtering and prioritizing test cases. In 2003 IEEE
14th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
442.

[21] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage

criteria for neural networks could be misleading. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 89–92.

[22] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-

yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity

testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM, 120–131.

[23] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao,

and Y. Wang. 2018. DeepMutation: Mutation Testing of Deep Learning Systems.

In 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 100–111.

[24] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. 2016. The limitations of deep learning in adversarial

settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[25] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-

tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[26] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),

81–106.

[27] Laura Elena Raileanu and Kilian Stoffel. 2004. Theoretical comparison between

the gini index and information gain criteria. Annals of Mathematics and Artificial
Intelligence 41, 1 (2004), 77–93.

[28] R Tyrrell Rockafellar. 1993. Lagrange multipliers and optimality. SIAM review 35,

2 (1993), 183–238.

[29] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-

tion techniques. IEEE Transactions on software engineering 22, 8 (1996), 529–551.

[30] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold.

1999. Test case prioritization: An empirical study. In Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE, 179–188.

[31] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001), 929–948.

[32] Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical

Report 1648. University of Wisconsin–Madison.

[33] Claude Elwood Shannon. 1948. A mathematical theory of communication. Bell
system technical journal 27, 3 (1948), 379–423.

[34] Mark Sherriff, Mike Lake, and Laurie Williams. 2007. Prioritization of regression

tests using singular value decomposition with empirical change records. In

Software Reliability, 2007. ISSRE’07. The 18th IEEE International Symposium on.
IEEE, 81–90.

[35] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484.
[36] Jack Stewart. [n. d.]. Tesla’s Autopilot Was Involved in Another Deadly Car

Crash. Available at https://www.wired.com/story/tesla-autopilot-self-driving-

crash-california/ (2020/01/27). ([n. d.]).

[37] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural

Networks. arXiv preprint arXiv:1803.04792 (2018).
[38] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,

and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. arXiv
preprint arXiv:1805.00089 (2018).

[39] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering. ACM, 303–314.

[40] Paolo Tonella, Paolo Avesani, and Angelo Susi. 2006. Using the case-based

ranking methodology for test case prioritization. In Software Maintenance, 2006.
ICSM’06. 22nd IEEE International Conference on. IEEE, 123–133.

[41] Matt P Wand and M Chris Jones. [n. d.]. Kernel Smoothing. CRC Press.

[42] MatthewWicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-Guided

Black-Box Safety Testing of Deep Neural Networks. In Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 408–426.

[43] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

[44] W Eric Wong, Joseph R Horgan, Saul London, and Aditya P Mathur. 1998. Effect

of test set minimization on fault detection effectiveness. Software: Practice and
Experience 28, 4 (1998), 347–369.

[45] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, An-

dreas Stolcke, Dong Yu, and Geoffrey Zweig. 2016. Achieving human parity in

conversational speech recognition. arXiv preprint arXiv:1610.05256 (2016).
[46] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: a survey. Software Testing, Verification and Reliability 22, 2

(2012), 67–120.

[47] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. 2009. Clustering

test cases to achieve effective and scalable prioritisation incorporating expert

knowledge. In Proceedings of the eighteenth international symposium on Software
testing and analysis. ACM, 201–212.

[48] Long Zhang, Xuechao Sun, Yong Li, and Zhenyu Zhang. 2019. A noise-sensitivity-

analysis-based test prioritization technique for deep neural networks. arXiv
preprint arXiv:1901.00054 (2019).

[49] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. Deeproad: Gan-based metamorphic testing and input validation

framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM, 132–142.

[50] Chris Ziegler. [n. d.]. A Google self-driving car caused a crash for the first time.

Available at https://www.theverge.com/2016/2/29/11134344/google-self-driving-

car-crash-report (2020/01/27). ([n. d.]).

188

https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/
https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/
https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/
https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Neuron Coverage Criteria
	2.3 Coverage-Based Test Prioritization

	3 Approach
	3.1 A Statistical View of DNN
	3.2 DeepGini: Prioritizing Tests of a DNN
	3.3 Enhancing DNN with DeepGini

	4 Experiment Design
	4.1 Datasets and DNN Models
	4.2 Adversarial Test Input Generation.
	4.3 Baseline Approaches
	4.4 Research Questions

	5 Result Analysis
	5.1 Effectiveness and Efficiency (RQ1 & RQ2)
	5.2 Guidance (RQ3)
	5.3 Discussion

	6 Related Work
	6.1 Test Prioritization Techniques
	6.2 Testing Deep Learning Systems

	7 Conclusion
	References

