Check for
Updates

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Adaptive Test Selection for Deep Neural Networks

Xinyu Gao Yang Feng” Yining Yin
xinyugao@smail.nju.edu.cn fengyang@nju.edu.cn ynyin@smail.nju.edu.cn
State Key Laboratory for Novel State Key Laboratory for Novel State Key Laboratory for Novel
Software Technology Software Technology Software Technology

Nanjing University
Nanjing 210023, China

Zixi Liu
zxliu@smail.nju.edu.cn
State Key Laboratory for Novel
Software Technology
Nanjing University
Nanjing 210023, China

ABSTRACT

Deep neural networks (DNN) have achieved tremendous develop-
ment in the past decade. While many DNN-driven software appli-
cations have been deployed to solve various tasks, they could also
produce incorrect behaviors and result in massive losses. To reveal
the incorrect behaviors and improve the quality of DNN-driven ap-
plications, developers often need rich labeled data for the testing
and optimization of DNN models. However, in practice, collecting
diverse data from application scenarios and labeling them properly
is often a highly expensive and time-consuming task.

In this paper, we proposed an adaptive test selection method,
namely ATS, for deep neural networks to alleviate this problem.
ATS leverages the difference between the model outputs to mea-
sure the behavior diversity of DNN test data. And it aims at select-
ing a subset with diverse tests from a massive unlabelled dataset.
We experiment ATS with four well-designed DNN models and four
widely-used datasets in comparison with various kinds of neuron
coverage (NC). The results demonstrate that ATS can significantly
outperform all test selection methods in assessing both fault detec-
tion and model improvement capability of test suites. It is promis-
ing to save the data labeling and model retraining costs for deep
neural networks.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

“Yang Feng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05...$15.00

https://doi.org/10.1145/3510003.3510232

Nanjing University
Nanjing 210023, China

Zhenyu Chen
zychen@nju.edu.cn
State Key Laboratory for Novel
Software Technology
Nanjing University
Nanjing 210023, China

73

Nanjing University
Nanjing 210023, China

Baowen Xu
bwxu@nju.edu.cn
State Key Laboratory for Novel
Software Technology
Nanjing University
Nanjing 210023, China

KEYWORDS

deep learning testing, deep neural networks, adaptive random test-
ing, test selection

ACM Reference Format:

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen
Xu. 2022. Adaptive Test Selection for Deep Neural Networks. In 44th In-
ternational Conference on Software Engineering (ICSE "22), May 21-29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3510003.3510232

1 INTRODUCTION

Deep neural networks (DNN) have been deployed in many fields
to assist in solving various tasks, such as medical image diagno-
sis [28], autonomous driving [9], customer services [55], machine
translations [6] and so on. As the DNN-driven software demon-
strates such fantastic performance on well-defined tasks, influenc-
ing our daily activities and lives, their quality and reliability have
raised wide concerns. DNN-driven software, essentially is one kind
of software program, could also suffer from software defects that
may cause monetary and even human life losses [1-3]. Therefore,
for DNN-driven software, quality assurance techniques have be-
come exceedingly demanded.

However, assuring the quality of DNN-driven software is a chal-
lenging task, due to the natural differences between DNN models
and conventional software systems. While conventional software
systems often rely on developers to construct the business logic
manually, DNN models, which form the kernel part and empower
the DNN-driven software, employ a data-driven programming par-
adigm that needs to learn the internal logic from massive data [36].
This feature not only makes the behavior of the DNN model diffi-
cult to interpret and analyze but also disables the application of
many conventional quality assurance methods. With millions or
even billions of neurons, connections, and activation functions,
DNN models construct complex nonlinear transformations to map
input features into the proper labels. Thus, it is hard for developers
to optimize the DNN-driven software by manually tuning the in-
ternal parameters of the DNN model. In practice, developers often

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510232&domain=pdf&date_stamp=2022-07-05

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

retrain the DNN model with rich data [23, 40, 43] to fix the incor-
rect behaviors and improve the performance of DNN-driven soft-
ware. In this process, they need to collect a great many of data from
application scenarios and hire a large workforce to label them.

Under this situation, identifying and selecting the most repre-
sentative data become critical for improving the effectiveness and
efficiency of quality assurance tasks of DNN-driven software. In-
spired by the great success that the structural code coverage cri-
teria achieved in conventional software programs, some prior re-
search has proposed structural neuron coverage to measure the ad-
equacy of DNN testing [32, 41, 49]. These researches have demon-
strated the effectiveness of structural neuron coverage on distin-
guishing the general mutation tests and adversarial samples. How-
ever, similar to the conventional code coverage, structural neuron
coverage also requires an extremely high overhead in the collec-
tion process, thus it is difficult to apply them on the large-scale
models [30]. Besides, several independent research groups also re-
veal that some neuron coverage criteria could rapidly reach the
maximum coverage with very few tests, which may restrict their
effectiveness as a guidance criterion for test selection [14, 23, 39].
On the other hand, another family of techniques is proposed to pri-
oritize test cases based on some rules [23]. Test prioritization tech-
niques often value test case that has a high probability of detecting
DNN incorrect behaviors. These techniques have demonstrated the
high effectiveness of collecting a portion of tests from a large size
of the dataset; however, they fail to consider the relationship and
distribution of selected data, and thus cannot diversify the detected
incorrect behaviors. This feature may fundamentally hinder their
applications, especially when there are plenty of similar, or dupli-
cate, tests in the candidate set.

This paper extends the above techniques and alleviates their lim-
itations. We explore an alternative solution to assist the test selec-
tion of DNN models. We first employ the output vector of a DNN
model to represent the model behaviors of the given input. Then,
we define the local domain of the DNN model output to describe
the fault pattern. By projecting the behavior information into dif-
ferent local domains, we can evaluate the fault pattern of the test
cases through extended operation, which values both the model un-
certainty and behavior diversity. Further, we design a fitness met-
ric to measure the fault pattern difference between the candidate
test and the selected set. Based on the above design, we propose
ATS, the first adaptive test selection method for deep neural net-
works, to select more diverse tests from the candidate set. ATS can
select a subset that reveals more different faults in the DNN-driven
software and reduces the labeling efforts for the optimization pro-
cess.

To validate the effectiveness of ATS, we conduct experiments for
ATS and baseline methods with four well-designed DNN models
and four widely-used datasets. We also realize different pollutions
of unfiltered datasets in reality and simulate them in our exper-
iments. The experimental results demonstrate that ATS performs
well in defect detecting tasks. Moreover, we also prove that our
adaptive test selection can select diverse defects faster than pri-
oritization techniques which blindly select the test cases without
considering differences. Finally, we demonstrate that ATS is more
effective than both the coverage-guided test selection methods and
test prioritization methods for DNN-driven system optimization.

74

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu

The contributions of this paper could be summarized as follows:

e Method. We model the fault pattern and design a metric
to evaluate their differences for DNN models. Based on the
fault pattern metric, we propose ATS, the first adaptive ran-
dom test selection method for DNN models.

e Tool. We implement ATS into a tool that could help DNN
developers to select test cases from massive unlabelled data.
We have released the source code of the tool and experimen-
tal datasets online 1,

e Study. We conduct an extensive experiment to investigate
the performance of ATS method, coverage-guided selection
methods, and test prioritization methods. The results show
that ATS can significantly outperforms other test selection
methods and efficiently enhances the DNN model.

2 BACKGROUND

This section includes several basic knowledge of DNN, neuron cov-
erage, and test selection methods.

2.1 The Architecture of Deep Neural Network

The architecture of the deep neural networks (DNN) can be repre-
sented as a composite function chain that maps the input data x to
the output result y.

y=fx) = OV (FP) (1)

Take an n-category classifier as an example, the goal of a deep neu-
ral network is to approximate y to the theoretical classifier y*. In
other words, by adjusting the inside weights of the DNN model,
we have y ~ y* which gives an output vector y = f(x) close to the
one-hot vector (i.e., corresponding ground truth) I = f*(x). The fi-
nal output result is calculated through the softmax function. It can
be interpreted as a probability (all elements are positive, and the
sum is 1). Thus the output domain Y satisfies the constraint that:

Y = {yly e R" |lylly =1 AVi,y(i) > 0} @)
And the set of all ground truth is denoted as L in this paper:
L={lleY,3il@) =1} (3)

Among them, the length D of the chain means the depth of the
network. The function in the middle of the chain, i.e., f (j), Jj =
{1,2,...,D—1},is the hidden layer of the DNN. Each hidden layer
£ maps the forward input into a vector, and each element of
the vector is an independent unit (called a neuron) representing a
vector-to-scalar function. The dimensionality D of the hidden layer
f () means the width of the network. Inside each layer, all neurons
of this layer are independent and act in parallel.

Therefore, for a D layer deep neural network model M with
fixed-width W, if an input date x is calculated by the model DNN,
we use h; € RW to represent the i-layer vector value. Combin-
ing all hidden layers vector, we could get a hidden layer matrix
H € RW*DP-1 which contains all the hidden neuron values of an
input data.

Given a DNN model DNN and an input data x, denote the set
Neuron(DNN, x) to represent the hidden output values when DNN

!https://github.com/SATE-Lab/ATS

Adaptive Test Selection for Deep Neural Networks

is executed with x:

Neuron(DNN,x) = H = [hy,...,hp_1] € RW*P~1 @)

And the final output result calculated by softmax function is de-
noted as:

Run(DNN,x) =yeY (5)

2.2 Neuron Coverage Criteria

Inspired by the effectiveness of structural coverage on guiding the
testing of conventional software applications, researchers have pro-
posed many testing criteria based on the structural neuron cover-
age to measure the test adequacy of deep neural network systems.
With the guidance of structural neuron coverage, several test gen-
eration techniques [26, 49, 57, 59, 63, 67] have been proposed to im-
prove the performance of DNN models. In this section, we briefly
introduce those structural neuron coverages.

Neuron Activation Coverage(NAC(k)). As the earliest neu-
ron coverage criterion [49], the primary assumption of NAC(k)
built upon is that the more neurons are activated, indicates more
states of DNN are explored. The computation process of NAC(k)
requires collecting each neuron’s output value and counting neu-
rons as covered if their outputs exceed the threshold k. The NAC (k)
coverage of a test is computed as the ratio of the number of covered
neurons to the total number of neurons.

k-Multisection Neuron Coverage (KMNC(k)). Based on the
NAC (k) assumption about the DNN states, the researchers further
assume that instead of treating the neuron as a value with only two
states (activated and inactivated), but treats the output of a neuron
as arange of values [41]. In other words, suppose that the output of
a neuron o on the training set is in the interval [low,, high,], and
divide them equally into k segments. The goal of the KMNC(k)
criterion is to make the neuron cover each segment of k segments.

Neuron Boundary Coverage (NBC). Different from KMNC(k),
neuron boundary coverage (NBC) focuses on whether the corner
regions (—co, low,] and [high,, o) are covered by test cases [41].

Strong Neuron Activation Coverage (SNAC(k)). Some stud-
ies point out that strongly activated neurons may have additional
value for DNN, so SNAC(k) was proposed [41]. Strong Neuron
Activation Coverage (SNAC) is a simplification of NBC, which
only collects the ratio of some neurons that cover the upper bound
[highy, o) to all neurons.

Top-k Neuron Coverage (TKNC(k)). Top-k Neuron Coverage
(TKNC(k)) focuses on the most active k neurons in each layer [41].
It is computed by the ratio of the total number of top-k neurons on
each layer to the total number of neurons in a DNN.

Modified Condition/Decision Coverage (MC/DC). Similar
to the concept of conventional software testing, MC/DC criteria of
neuron networks [58] models the neuron output value (or sign) as
a decision, and all the previous layer connected neurons are mod-
eled as conditions. Neuron network MC/DC consists of four im-
plementations, namely SS, SV, VS, and VV-coverage, and all of the
above-mentioned neuron coverage criteria could be regarded as a
specific situation of the original MC/DC neuron coverage [58].

75

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

2.3 Test case selection methods

In this section, we introduce several widely used test case selection
methods. For any test selection method, the goal is to obtain a fixed
size (N) subset X from the candidate set X, i.e., we have Xs C X
and | Xg| = N.

2.3.1 Coverage-guided test selection. In this section, we introduce
a set of test selection methods guided by coverage metrics. In con-
ventional software testing, testers tend to select a test case that
covers more different code lines [65]. This kind of selection method
follows a basic assumption that early reaching the maximum cov-
erage would lead to the higher capability of defect detection [22].

For any coverage metric, in each iteration, it follows an addi-
tional greedy algorithm to select the next test according to the
feedback from the previously selected set, i.e., select the test cases
that covers the maximum number of uncovered area of the given
coverage criterion.

2.3.2 Prioritization test selection. Generally, for a given candidate
set Xc, prioritization test selection methods compute a weight p
for each test case x in the candidate set. The weight p represents
the test significance of test x. In other words, p is the possibility of
revealing model errors. It could be denoted as follows:

(6)
The test case with higher priority p is supposed to have a higher
value of detecting faults and enhancing the DNN model. Therefore,
the prioritization test selection can be represented as follows:

arg max Z |Priority(x)|
ngXc/\|X5|:Nx€XS

p = Priority(x) x € Xc

Xs = ™

Simply speaking, the priority method of test case selection is to
select the test cases with top-N weights to form a test suite of the
required size.

Here we introduce four different prioritization selection meth-
ods, which come from different fields of Al software testing and
traditional Al research.

DeepGini. Recently, Feng et al. [23] propose a test prioritiza-
tion technique based on a statistical perspective of DNN, named
DeepGini. It takes the use of the Gini coefficient to measure the
likelihood of test case x being misclassified.

LSA. Kim et al. [32] propose a test criterion towards DNN test-
ing, called SADL (Surprise Adequacy for Deep Learning). In the
research, LSA (Likelihood-based Surprise Adequacy) is proposed
to measure how close to the class boundary the new inputs are.
The higher LSA value of the test means it is more surprising to
the DNN. Thus it could be regarded as a priority weight for test
selection.

CES. Li et al. [40] propose a test selection method based on con-
ditioning, which is to assess the new precision on operational envi-
ronments. The experiment results show that CES (Cross Entropy-
based Sampling) estimator outperforms random sampling in all ex-
periments.

Maxp. Maxp is a representative uncertainty sampling strategy
of active learning [50]. It employs the maximal prediction probabil-
ity of the classification task to indicate the prediction confidence of
the classification model and thus prioritizes the input of the least
prediction confidence.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

3 METHODOLOGY

The key feature of our selection method is to select test cases with
diverse failure directions and higher failure probabilities. First, we
introduce a motivating example for adaptive test selection of DNN
testing. Then, we propose a mapping relationship, which converts
the output domain into a set of intervals to describe the fault pat-
tern of a given test or set. After that, we propose a fitness metric
to measure the difference between the candidate test and the se-
lected set. Finally, we propose the adaptive test selection method
ATS based on fault pattern and fitness metric.

3.1 Motivation and Inspirations

For the conventional software program, there has been some work
discussing the shape and the location of faults from the perspective
of the input domain [4, 8, 12, 24, 61]. To achieve an even spread of
test cases within the input domain, Chen et al. [15] propose adap-
tive random testing (ART) based on the analysis of fault patterns.
Even though in the past decade, plenty of techniques have been
proposed for improving ART and extending its application scenar-
ios [7, 11, 16, 31], it is difficult to apply them to the DNN model
testing tasks because of their working nature and input features.

The input data of modern DNN models are often of various
types, such as images, point clouds, texts, speech signals, and so
on. This variance makes it difficult for us to measure the fault pat-
tern from the input domain. Nevertheless, for a given test input, the
DNN model often produces a vector containing the probability of
labels and thus determines the final output based on the probability
distribution. Thus, based on the probability distribution, selecting
the test with higher uncertainty may obtain a higher probability
of detecting DNN faults. For a given output vector y € R", the pro-
cess could be formalized as Run(DNN, x) = y. For a classification
model, we regard an input data x is classified as i-th category, iff
the i-th element of y is the maximum element (i = arg max; y(i)).
If the output probability of the input data is more concentrated
(max(y(i)) is closer to 1), we assume that the model has higher
confidence for classification results.

Further, the test cases which are different from each other could
reveal more diverse faults of DNN models. For multiple test cases
with the same degree of uncertainty, a similar test may correspond
to the same fault, and the test cases that differ from each other
could better reveal different faults of the model. For example, if
we have a test set X = {x1,x2,x3,x4}. The output vectors are:
y1 =< 0.9,0,0.1 >, y2 =< 0.6,0,0.4 >, y3 =< 0.2,0.4,0.4 > and
y4 =< 0.59,0,0.41 >. Thus, we can regard the DNN model as more
confident for the classification result of x1, and {x2, x4} are more
likely to be similar. Above observations inspire us to introduce a
metric to measure the difference of faults from the perspective of
the output domain. Based on this metric, we design and implement
ATS to guide the test selection of DNN models.

3.2 Fault Pattern Computation

We design the fault pattern mapping Pattern, which converts the
output vector into several intervals to satisfy the insights intro-
duced above. The size and location of the subsets reflect the infor-
mation of the model’s uncertainty and test case x’s fault pattern.

76

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu

Project Extend

Figure 1: A simplified figure to illustrate Step.3&4. (Project
and Extend).

Such a mapping assists us in analyzing and extracting the fault pat-
tern distribution corresponding to each test case from the output
domain. On the one hand, we define the uncertainty of test case
x € T; as Uncertain(x) = 1 — Run(DNN, x) (i). For example, if we
have an output vector y =< 0.3,0.3, 0.4 >, then the uncertainty is
denoted as 1 — max(y(i)) = 0.6. On the other hand, we express
the direction as the line from the prediction one-hot vector L; to
the output vector y. For example, for the output vector y denoted
above, its prediction vector is denoted as L3 =< 0,0, 1 >, thus the
direction is denoted as lgy =< 0.3,0.3,-0.6 >. Finally, we design
the fault pattern based on both direction and uncertainty.

3.2.1 Fault Pattern of Test Case. Next, we introduce the main steps
of computing the fault pattern. For a test set T, the fault pattern of
each test x € X is calculated by four steps.

Stepl. Test Set Clustering : For each test case x € T, we cluster
the test case into n subset of T based on its prediction cate-
gory,ie.,wehavex € T;iff i = arg max; (Run(DNN, x) (i)) =
arg max; y(i). Clustering based on the prediction category
ensures that we can analyze test cases with similar results.
Local Domain Determining: For each test case x in clus-
ter T;, we construct an index set Ind (i) = {(i, p,q@)lp # q #
iNl <p <q<nAp,qe N} Each element in Ind(i) repre-
sents a local domain, which is a plane spanned by L;L, and
L;iLq. By analyzing each local domain one by one, we could
extend fault pattern information to tasks with any number
of categories (n > 3).

Project Operation: This step aims to extract local infor-
mation of test case x’s output vector y. Refer to Fig. 1, the
goal of Project is to find the y’ € Ar,L,1L, subject to (y' -

Step2.

Step3.

y) L span(Li_ip, L;Lq). Specific calculation formula can re-
fer to [10, 56]. Through calculation, we could get the local
information y’ corresponding to index (i, p, q).

Extend Operation: Extend the subspace vector y’ deter-
mined by (i, p, q) to an interval denoted as Patterny (i, p, q) =
[a, b]. Refer to Fig. 1, we implement the operation in the tri-
angle Ar;p pLg- We determine the intersection point by ex-

Step4.

tending L;y' to LpLg. The intersection point represents the
local direction of the test case x. After that, the local fault
pattern is designed as a segment GK in line LpLg. The mid-
point of segment GK is the intersection, and the length is
determined by the uncertainty of the test case x. Finally, we
normalize the LyLq to the interval [0, 1], and consider the
local fault pattern as the normalized interval [a, b] C [0, 1]

Adaptive Test Selection for Deep Neural Networks

of segment GK. The normalized length of [a, b] is controlled
by l_Ty(l), where 7 is a hyperparameter to control the gran-
ularity. We record the local fault patterns of test x € T; cor-
responding to index (i, p, q) as Patterny (i, p, q) = [a, b].

Local Pattern Gathering: For each test case x in cluster
T;, we collect all of its local fault patterns Patterny (i, p, q),
where (i, p,q) is in Ind(i), the set of local patterns is re-
garded as test case x’s fault pattern. In other words, we have

that Patterny = U (i p.q)emd (i) {(i 0, @) : [a b]}.

Step5.

Table 1: An example to illustrate fault pattern.

Index 1 2 3 4 |Inter Local Fault
sect Pattern

Run(DNN,x) =y[[0.5 02 02 01] - -
Patterny(1,2,3) |[0.53 0.23 0.23 0 | 0.5 [0.45,0.55]
Patterny(1,2,4) |10.57 027 0 0.16| 0.64 [0.59,0.69]
Patterny(1,3,4) |[0.57 0 0.27 0.16| 0.64 [0.59,0.69]

Example 1. Here we introduce a 4-category classification exam-
ple to illustrate the fault pattern introduced above. For the test case
x and its output result Run(DNN,x) = y =< 0.5,0.2,0.2,0.1 >.
First, we determine i = arg max; y(i) = 1. (Stepl.) Second, when
n = 4, the index set of cluster T; is constructed as Ind (i) = {(1, 2, 3),
(1,2,4), (1,3,4)}. (Step2.) After that, the local information y’ of
output y is calculated (Step3.), which is shown in column 1,2,3,4.
Based on the Extend operation (Step4.), the intersection points are
shown in Intersect column. The length of local fault pattern is cal-
culated by (1-y1)/n = 0.1 (n = 5 in this example), and the covered
interval of (i, p, q) is shown in the last column. Finally, we could
gather the fault pattern of test case x (Step5.). Patterny, = {(1,2,3) :
[0.45,0.55], (1,2,4) : [0.59,0.69], (1,3,4) : [0.59,0.69]}.

3.2.2 Fault Pattern of Test Set. To obtain the fault pattern of a
given test set T, we need to merge the fault patterns calculated by
each test case. In other words, for cluster T;, we take the union of all
corresponding local fault patterns under each specific local domain
(i, p, q), denoted as Patternt, = Ui p,q)cInd (i) {(i- p, @) = S} Noted
that, S is a subset of normalized segment interval [0, 1], which is
obtained by S = 7, Patterny (i, p, q).

Finally, we gather together fault patterns of all clusters to get
the fault pattern of the given test set T:

Patternt = U U

T;,i=1,....n (i,p,q) €Ind (i)

{Gp.q : S} ®)

3.3 Fault Pattern Fitness Metric Design

With the help of fault pattern, we propose a fitness metric that
assesses the difference between test case x and the selected test set
S. Based on this metric, we could migrate the basic idea of adaptive
random testing (ART) into DNN test case selection.

3.3.1 Fitness Metric. The fitness metric aims to provide a normal-
ized value to quantify the fitness of each candidate x from the can-
didate set C against the selected set S, denoted as Fitness(x, S).

77

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

When test x belongs to cluster T;, the fitness metric could be
expressed as follows:

|Patterny (i, p, q) \Patterng (i, p, q) |
|Patterny (i, p,) U Patterng (i, p, q)|

)

Noted that, the operator \ and U in Eq. 9 are basic set opera-

tors [25], and | - | represent the length of corresponding set. The

Fitness metric reflects the difference between the test x and the
selected set S.

Fitness(x, S) =
(i,p.q)€lnd (i)

Algorithm 1: ATS test selection Alg.

Procedure ATS(DNN,C C X, N);
collect output vectors: Run(DNN, X);

determine output vector dimension n;

-

©

()

'S

cluster C into n subset: C; (i = 1,...,n);

a

construct index sets: Ind (i) (i=1,...,n);

o

for each test x € C, calculate fault pattern: Pattern,;
LSy — 0
initial selected test case list: S « 0;
P N
forj=1,2,...,[5] do
// evenly select from each cluster

N

initial selected subset: S1, ..

o

©

10 fori=1,2,...,ndo

1 if C; # 0 then

12 for x € C; do

13 L calculate Fitness(x, S;);

14 if maxy Fitness(x, S;) > 0 then

15 x = arg max, Fitness(x, S;);
// select test x with maximum fitness

16 S.append(x);
// Added in order

17 S; — SiU{x};

18 Ci — Ci\{x};

19 C— Ui:l,...,n Ci;

20 while size(S) < N do

21 for x € Cdo

22 L calculate Fitness(x, S);

23 if max(Fitness(x,S)) > 0 then
24 L x = arg max, Fitness(x, S);

25 else

26 \»
27 S.append(x);

C« C\{x};

29 return selected list: S;

// select test x with maximum fitness

X =arg Ulaxx(z(i,p,q)elnd(i) |Paﬁernx(i’P> ‘I) B
// select test x with higher uncertainty

28

3.3.2 Overall procedure. We divide the whole selection procedure
into two parts: cluster by cluster selection and total selection. From
Line 9 to Line 17, we tend to evenly select test cases which have
maximum fitness metric Fitness(x, S;) according to the selected
subset. Thus, we could select the test case with different fault pat-
terns and higher uncertainty in each cluster. If the candidate set
is unbalanced, there may exist a situation that we cannot select

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

enough test cases for some clusters. From Line 20 to Line 28, we
select the rest part of the selected set S. First, we prefer test cases
with higher fitness metric results. In Lines 25-26, if all test cases
in the candidate set have the same fitness scores, then we simply
select the next case based on its uncertainty.

Table 2: A simplified example of ATS.

Candidate Case Ori Round 1 Set Round 2
test Pattern | Pattern Fitness | Pattern Fitness
X1 [0.45,0.55] 0.05/0.35 0.05/0.53
X2 [0.2,0.4] 0/03 | [0.2,05]U 0.0/0.48
X3 [0,0.12] | [0.2,0.5] 0.12/0.42 | [0.7,0.88] 0.12/0.6
x4 [0.7,0.88] 0.18/0.48 -
X5 [0.46,0.66] 0.16/0.46 0.16/0.64

Example 2. In this part, we introduce a simplified example of ATS.
We omit the process of clustering (Step1.), local domain determin-
ing (Step2.) and local fault patterns gathering (Step5.). Thus only
the core part of the selection procedure is introduced. In Round 1,

we show the fitness between original fault pattern [0.2,0.5] and

|Pattern, \Patterng |
> |Pattern,UPatterng| " For example,

for test case x1, Fitness(x1,[0.2,0.5]) = ||[[82§8§§]]L\)[[%3%55]] ‘l =
1(0.5,0.55]|

T0.2055]] = 0.05/0.35. Based on Line 15 in Alg. 1, we select out
test x4 in the first round. And in column Set Pattern, we update
the fault pattern of the selected set. In the next round (column
Round 2), we calculate the fitness between each test in candidate
set {x1,x2,x3,x5} and [0.2,0.5] U [0.7, 0.88]. Finally, in Round 2,
we select out the maximum fitness test case x5.

the fault pattern of each test, i.e.

3.4 Enhancing the DNN model with ATS

Both testing and enhancing the DNN-driven system need to rely
on manually labeled data. Collecting plenty of unlabeled data is
usually easy to achieve. However, compared with the cost of data
collection, the cost of manual labeling is much greater. For data
with strong expertise knowledge, such as medical image data, it is
unrealistic to blindly label all collected data. Therefore, the signifi-
cance of DNN test selection is to reduce the labeling cost. Such an
idea is also inspired by active machine learning [50], which aims
to select data near the decision boundary (uncertainty). Program-
mers suppose that these uncertain data could be used to optimize
the decision boundary of DNN more efficiently.

Besides, ATS also pay attention to the distribution selected data
subset. The success of adaptive random testing (ART) proves that
the selection strategy based on previously selected data feedback
is meaningful. From the perspective of the DNN model, the com-
plexity of the decision boundary makes uncertainty prioritization
prefers a specific fault pattern.

To sum up, ATS could not only select test cases to detect model
faults more efficiently but also construct a more proper subset for
DNN optimization through retraining.

4 EXPERIMENT DESIGN

This section introduces our experimental settings, including the
data set and DNN model used in the experiment, select data set

78

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu

generation methods, baseline approaches, and research questions.
To conduct the experiments, we implement our approach as well as
various NC-guided test select methods upon Keras 2.3.1 with Ten-
sorFlow 1.13.1. All experiments are performed on a Ubuntu 18.04.3
LTS server with two NVIDIA Tesla V100 GPU, one 10-core pro-
cessor “Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz”, and 120GB
memory.

4.1 Datasets and DNN Models

Table 3: Dataset and DNN models.

Dataset Description |DNN Model #Neurons Layers
28x28 hand- LeNet-1 42 5
MNIST written digits| LeNet-5 258 7
32x32 colored| ResNet-20 698 20
CIFAR-10 images VGG-16 7274 21
) 28x28 gray- LeNet-1 42 5
Fashion scale images | ResNet-20 698 20
street view LeNet-5 258 7
SVHN numbers VGG-16 7274 21

In the research, the experiments are constructed on four well-
known publicly available DNN datasets: MNIST, CIFAR-10, SVHN,
and Fashion. Table 3 presents the statistical details on these datasets.
MNIST [64] dataset is a handwritten digits dataset with 10 labels.
It contains 70,000 input data in total, of which 60,000 are training
data, and 10,000 are test data. CIFAR-10 [33, 34] dataset consists
of 60,000 32x32 colour images in 10 classes, with 6,000 images per
class. CIFAR-10 is divided into 50,000 training and 10,000 testing
images. Fashion [62] is a dataset of Zalando’s article images con-
sisting of a training set of 60,000 examples and a test set of 10,000
examples. Each example is a 28x28 grayscale image associated with
a label from 10 classes. SVHN [47] is a real-world image dataset
that can be seen as similar to MNIST. But it incorporates an order
of magnitude more labeled data (over 600,000 digit images). It is col-
lected from house numbers in Google Street View images. At the
same time, we select four different scale DNN models to ensure the
universality of our experiments, which are LeNet-1, LeNet-5 [37],
VGG-16 [54] and ResNet-20 [28]. For each data set, we select two
different DNN models to ensure the criterion result is stable and
excellent on different combinations.

4.2 Candidate Set Construction

To simulate the data mutation in realistic settings, we choose to fol-
low the prior research convention [46, 53] and employ seven well-
designed benign perturbations rather than adversarial examples
generators for data augmentation. We make this choice is because
adversarial examples are often generated from carefully designed
algorithms [35, 48], they cannot represent data collected from the
real-world application scenario and may lead to unreliable conclu-
sions [39].

For each dataset, we generate the test data based on seven well-
used benign perturbations to retain its original label, including

Adaptive Test Selection for Deep Neural Networks

shift, zoom, brightness, rotation, shearing, blur, and contrast ra-
tio [46, 53]. When the original test size is N, for each augmenta-
tion operator, we generate the same amount of data. We divide the
original test set and each generation set into two parts, one for
constructing the candidate set and the other for constructing the
new test set. For the MNIST dataset, we finally constructed a can-
didate set and a new test set with the same size 40000, i.e., 5000
original test data, and 5000 generated data for seven augmentation
operators.

Furthermore, considering that unfiltered candidate data may in-
clude pollution and invalid data. For each generated candidate set,
we also design different data pollution scenarios to cover differ-
ent types of invalid data that may exist in an unfiltered dataset. In
addition to the pure candidate set, we construct four polluted can-
didate sets with 20% additional invalid data, including irrelevant
data, meaningless synthetic data, repeat data, and crashed data.

To sum up, we construct five candidate sets for each dataset,
including a pure valid data set and four unfiltered datasets with
part of invalid data.

4.3 Baseline Approaches

During the test selection, we take the Random Sampling as a base-
line method naturally. We denote this baseline as RS. RS draws
samples randomly from the candidate test set according to the tar-
get size.

Next, we introduce other baseline approaches used in experi-
ments. The baseline selection methods are divided into two types:
coverage-guided test selection and prioritization test selection. We
choose four typical techniques for each type.

4.3.1 Coverage-guided Test Selection. To compared with coverage-
guided test selection methods, we select 4 well-known DNN neu-
ron coverage criteria (NAC [49], NBC, TKNC and SNAC [41])
to guide the test selection procedure introduced in Sec. 2.3.1. For
the more specific introduction, refer to Sec. 2.2. Noted that lim-
ited by the computation resource, we abandoned KMNC [41] and
MC/DC [58] as the baseline because even for a simple DNN model
(LeNet-5), they take more than 24 hours to select 10% test cases.
The configurable parameters of the neuron coverage criteria fol-
low the authors’ suggested settings or employ default settings of
the original papers [41, 49].

4.3.2 Prioritization Test Selection. We also choose four prioritiza-
tion selection methods introduced in Sec. 2.3.2 to compare the ef-
fectiveness with widely-used prioritization methods. More specifi-
cally, we conduct the experiments with DeepGini [23], LSA [32],
CES [40] and Maxp [38]. Noted that for DeepGini, we abbreviated
it as Gini in the rest of the paper.

4.4 Research Questions

ATS is designed to adaptively select the next test case according to
the previously selected set. It aims to select an appropriate subset
for model faults detection and DNN model optimization. Based on
the goals of test selection, we empirically explore the following
research questions (RQ).

4.4.1 RQ1: Fault Detection. Can ATS detect more faults than
baseline approaches?

79

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

Similar to conventional software testing, for a given test selec-
tion method, a selected set that can trigger more faults means it
could reveal more defects in the software. Therefore, we first com-
pare the fault detection capabilities of ATS and baseline approaches.
In each DNN model & Dataset, we select 10% size of each candidate
set, filter the invalid data, and collect the corresponding fault de-
tection rate. For a selected test set X, the fault detection rate is
defined as follows:

|prong|

Fault_Detection_Rate(X) = X]

(10)
where |X;| denotes the number of test cases being misclassified,
and |X| denotes the size of the selected set.

4.4.2 RQ2:Fault Diversity. Can ATS select test cases that cover
more diverse faults?

For traditional software testing, Chan et al. [15, 18] have ob-
served that failure-causing inputs usually are very dense and close
to one another. Such insight could be migrated to DNN model test-
ing, i.e., similar faults may reflect the same defect in DNN. In order
to analyze the model more comprehensively, we hope the test se-
lection methods could not only detect more faults but also detect
more diverse faults efficiently.

We use a concept of fault type to answer this question. For a
given test case x being misclassified, its fault type is defined as:

(11)

where Label(x)* denotes the ground-truth label, and Label(x) de-
notes the prediction label calculated by DNN model. For example,
if a handwritten digits x with true label “7” is misclassified into “1”,
then the fault type of x is denoted as: Fault_Type(x) = (7 — 1).

For each candidate set with ten categories, the number of fault
types is 10 X 9 = 90. Therefore, for each DNN model and dataset
combination, we aggregate the fault types of the five candidate
sets, the total number of fault types for a specific DNN&Dataset is
90 x 5 = 450. We collect the theoretical maximum number of fault
types and compare the changing trend of the number of detected
fault types.

To quantify the capability of selecting diverse faults, we collect
the cumulative sum of the fault types found by specific test se-
lection methods and compute the corresponding RAUC (ratio of
area under the curve) between the selection method and theoreti-

Fault_Type(x) = (Label(x)* — Label(x))

cal curve.

4.4.3 RQ3: Optimization Effectiveness. Does the test cases se-
lected by ATS guide the retraining more effectively?

Different from the traditional software, the DNN model could
not be enhanced directly. Therefore, we propose RQ3 to further
evaluate the effectiveness of retraining the DNN model with se-
lected test cases. To answer RQ3, we choose four selected set with
different sizes (2.5%, 5%, 7.5%, 10%) to add back into the original
training set and retrain the DNN model. And the effectiveness of
model optimization is compared on the newly constructed test set
introduced in Sec. 4.2.

The experiment is repeated twice in all combinations to avoid
random errors in the process of retraining. Furthermore, we not
only compute the average accuracy improvement but also imple-
ment the Wilcoxon rank-sum test [21] to check whether the ATS are

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

statistically significant outperform other baseline approaches at
the significance level of 0.05.

5 RESULT ANALYSIS

In this section, we present the results of fault detection (RQ1), fault
diversity (RQ2) and further analyze whether ATS could optimize
the DNN model more effectively (RQ3).

5.1 Answer to RQ1: Fault Detection

As shown in Table 4, we compare the average fault detection rate
between ATS and baseline methods. Limited by the space, we only
display two selection ratio results (5% & 10%). Other results follow
the same trend.

First, we found that all coverage-guided test selection methods
have a poor performance in detecting faults. Such a finding is con-
sistent with the former research [14, 27, 39]. Compared with some
existing works that demonstrate the fault detection capability of
neuron coverage in the test set with adversarial examples [39, 41],
we assume that the faults generated by data mutation in realistic
settings are more natural yet challenging to be detected. One of
the possible illustrations to the ineffectiveness of neuron coverage-
guided test selection may be that, compared to adversarial exam-
ples, benign perturbations could not lead to many different neuron
activation states. Besides, we also find out that the neuron cov-
erage is easy to reach the maximum during the selection process
and no longer be increased, which is also supported by existing
researches [23].

Compared with random sampling (RS) baseline, both ATS and
most prioritization selection methods show a higher capability of
detecting more faults. ATS has the best result in most DNN model
& dataset combinations. We conclude that ATS has an outstanding
capability of detecting more faults within a limited selection size.

5.2 Answer to RQ2: Fault Diversity

As shown in Fig. 2, for each Dataset & DNN model combination,
we draw the cumulative sum curve of the fault types for each selec-
tion method. Note that the dark blue curve on the top represents
the theoretical maximum number of fault types that could be in-
cluded in the corresponding subset size. Besides, we also compute
the ratio of area under the curve (RAUC) between theoretical and
each selection method. The closer the RAUC is to 1, means the cor-
responding selection method performs better in detecting more di-
verse faults. The results of RAUC are shown in Tab. 5. Compared
with random sampling (RS) baseline, ATS, Gini, Maxp, and TKNC
show better results consistently.

However, different from the results shown in RQ1, ATS achieved
the best results under all dataset&DNN model combinations. For
example, as for Fashion & LeNet-1, both Gini and Maxp show a
higher fault detection rate than ATS in Tab. 4. In RQ2, the RAUC
of Gini and Maxp are only 79.48% and 81.51%, respectively, while
the RAUC of ATS is 91.88%. This phenomenon means that although
prioritization test selection methods can sometimes detect more
faults, the test cases selected by these methods may have an uneven
distribution. In other words, prioritization test selection methods
may prefer a specific type of fault. There does not exist an adaptive
adjustment step for the priority list to adjust the weight based on

80

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu

selected set feedback. Such selection methods are easy to select a
subset with limited fault types, which may have a negative impact
on model optimization.

5.3 Answer to RQ3: Optimization Effectiveness

The final goal of DNN testing is to detect faults and optimize the
DNN model to improve the generalization of the DNN model. Thus
we evaluate the effectiveness of DNN optimization by adding back
valid test data into the original training set. We collect the accu-
racy improvement results of four different selection ratios (2.5%,
5%, 7.5%, 10%). The concrete accuracy improvement results can be
found in Tab. 6.

From the perspective of selection methods, the average accu-
racy improvement results of most selection techniques perform
better than random sampling. Although LSA displays the best ac-
curacy improvement under the combination of MNIST &LeNet-5,
the retraining results under other combinations guided by LSA are
even worse than random sampling the same size test cases for re-
training. To evaluate the effectiveness more precisely, we use the
Wilcoxon rank-sum test [20] to check whether ATS outperforms
other baseline approaches. We implement the one-side Wilcoxon
rank-sum test to check whether the baseline method is greater or
worse than the ATS. If the p-value is less than 0.05, we reject the
null hypothesis Hp and accept the alternative hypothesis H; that
one method is stochastically greater than another. Otherwise, we
regard there is no significant difference between the two methods.
The results show that no baseline exceeds ATS statistically. Only
in very few configurations, there are some prioritization methods
that show similar performance to ATS.

Furthermore, considering the Fashion & LeNet-1 discussed above,
ATS achieves a significant retraining improvement over Gini and
Maxp. Such a result supports our assumption that, instead of se-
lecting more faults with less diversity, ATS could select a subset
with enough faults with more fault types, which is more effective
to enhance the DNN model.

6 DISCUSSION

This section further discusses the ATS with adaptive random test-
ing and active learning and also demonstrates the threats to the
validity of this paper.

6.1 The Effectiveness of ATS

From all experimental results, ATS is more effective than other
existing test selection methods. By analyzing the results of other
baselines, we observe that although structural coverage criteria are
effective in classic testing applications, neuron coverage criteria
seem ineffective to be a guide criterion for DNN test selection. Be-
sides, compared with existing prioritization methods, ATS shows a
better and more stable result.

Similar to the idea of classic adaptive random testing (ART) [15,
18], ATS selects the test case based on the fitness between each
candidate ¢ from the candidate set C against the executed set E.
However, at the same time, ART cannot be directly applied to DNN
testing. One reason is that different from the low dimensional in-
put domain discussed in ART, the input data dimension of the DNN
model is pretty large [68]. The curse of dimensionality lead to the

Adaptive Test Selection for Deep Neural Networks

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

Table 4: The average fault detection rate for each configuration.

Selecting 5% tests

H Selecting 10% tests

Fault Detect(%) Coverage-Guided Prioritization Coverage-Guided Prioritization

Data Model | RS |NAC NBC SNAC TKNC|Gini CES LSA Maxp|ATS|| RS |NAC NBC SNAC TKNC|Gini CES LSA Maxp |ATS
LeNet5 |84] 88 94 84 86 |239 106 40.8 248 |425|/85] 87 92 86 85 |237 10.6 404 247 |40.9

MNIST {oNet1 [9.9]101 97 97 100 |36.6 88 327 380 |48.7||9.8| 99 97 98 97 [364 87 326 37.8 |47.0

Pashion LENetl [187[187 184 185 209 [532 161 313 54.8 53.2([186[186 186 183 203 [525 160 313 53.9 515
ResNet20 [18.8 18.9 19.0 17.6 19.6 |53.1 17.9 23.9 52.1 |57.4|[18.6| 187 19.1 18.0 19.3 |52.1 18.0 24.6 51.4 |55.7

cpap VOG16 [192[17.0 192 185 223 [50.4 259 135 510 [56.4[[19.3[17.4 190 185 216 |49.6 258 136 50 [55.0
ResNet20 (13.5| 13.8 14.1 13.6 141 |43.3 151 13.8 438 [52.4|[133| 13.8 140 13.5 13.6 |42.6 15.1 13.7 43.4 |51.2
LeNet5 |16.4]157 163 162 159 |53.8 14.9 244 54.3 |53.1][16.3) 157 16.1 159 159 |52.7 14.8 24.1 53.0 |49.4

SVAN yoGi6 |71]73 75 72 84 |285125 65 300 [44.3|[74| 75 78 75 86 (289 132 65 30.9 |40.1

Diverse Errors

100

12 3 10 12 3

4 s 6 7 8 2 s 6 71 8
Percentage of Selected Tests (%) Percentage of Selected Tests (%)

(a) MNIST & LeNet-5 (b) MNIST & LeNet-1

12 3 10 12 3

4 s 6 71 8 4 5 6 7 8
Percentage of Selected Tests (%) Percentage of Selected Tests (%)

(c) Fashion & LeNet-1 (d) Fashion & ResNet-20

Diverse Errors

12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 98 10
Percentage of Selected Tests (%) Percentage of Selected Tests (%)

(e) CIFAR & VGG-16 (f) CIFAR & ResNet-20

1 2 3 4 5 6 1 8 9

Percentage of Selected Tests (%) Percentage of Selected Tests (%)

(g) SVHN & LeNet-5 (h) SVHN & VGG-16

Figure 2: The cumulative sum of the fault types found by specific test selection methods.

Table 5: When selecting 10% tests, the ratio of area under the
curve between each selection method to theoretical.

RAUC MNIST Fashion CIFAR SVHN
(%) |LeNet5 LeNet1|LeNet1 ResNet20/VGG16 ResNet20(LeNet5 VGG16
RS ‘ 62.97 6597 | 62.87 61.25 | 7041 6390 | 91.34 77.67

NAC | 65.13 66.39 | 62.83 61.38 68.12 67.38 92.16 75.84
NBC | 67.74 6391 | 57.53 60.52 70.05 62.97 92.12 78.15
SNAC| 61.92 67.06 | 60.41 61.38 70.08 66.05 88.87 76.42
TKNC| 63.95 68.15 | 65.58 63.42 77.20 62.70 91.03 80.57
Gini | 55.73 82.57 | 79.48 89.97 92.66 92.00 98.18 88.94
CES | 67.82 60.84 | 62.58 57.41 79.45 65.57 90.19 85.37
LSA | 80.92 79.18 | 77.01 60.69 55.60 61.51 89.72 41.15
Maxp | 59.75 83.00 | 81.51 90.06 92.50 9134 | 98.43 92.71
ATS | 89.32 91.48 | 91.88 92.20 |95.60 95.43 |98.80 97.52

81

invalidation of fitness metric. Thus we choose to design ATS in the
output domain. The other reason is that the target between ran-
dom testing and DNN testing is different. ART aims to reduce the
resource cost of constructing test cases randomly. It means that
only if the computational cost of ART is much lighter than RT
then we can consider ART is an effective and efficient test selec-
tion method [5, 60]. However, for DNN testing, the cost of manual
labeling is often extremely expensive, especially when the labeling
task requires professional knowledge [51]. In this case, the contro-
versy of computational overheads is no longer essential for DNN
test selection because the resource cost in test execution and data
selection is much cheaper in comparison with the consumption of
manually labeling.

To further discuss the significance of ATS for DNN testing, on
the basis of RQ3, we obtain the accuracy improvement when re-
training the model with the whole candidate set. First, in Row Ori
Acc, we give the original accuracy of each model on the newly

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu

Table 6: The DNNs’ accuracy improvement value after retraining with the selected tests.

Coverage-Guided Prioritization Coverage-Guided Prioritization

Dataset | Model |ATS|NAC NBC SNAC TKNC|Gini CES LSA Maxp| RS || ATS|NAC NBC SNAC TKNC|Gini CES LSA Maxp | RS
LeNet5 [238]1.39 1.83 160 1.63 |142 1.65/2.60 152 |1.42] [409] 280 297 270 294 |246 2.734.16 2.68 |255

MNIST | | eNet1 [2.37] 1.57 1.67 155 165 |1.78 1.08 207 | 201 |143| 3.97|297 285 290 281 |346 200 331 3.66 |251
S Fushion | LeNetl [1.531092 079 082 091 |1.14 070 111 119 |0.84|| 2,82/ 193 166 189 195 (232 140 192 245 |172
~§ ResNet20 [3.34| 2.86 2.86 2.83 275 |3.22 2.57 2.23 | 3.24 |2.66 || 4.96| 4.17 430 4.08 415 |4.86 3.88 3.57 | 4.94 |4.04
2 Ccrpag | VGG16 236|185 183 184 198 |227 195 134 221 |1.86|| T 373 261 267 267 278 |348 275 179 352 |265
= ResNet20 |0.99| 0.45 042 050 031 |0.88 040 0.15 0.88 [0.38|| 2 1.68] 0.96 0.95 1.07 1.03 |1.52 1.00 0.55 1.49 |0.94
LeNet5 [1.74]0.90 095 093 084 [149 099 126 150 [1.14|| 3.47|173 190 177 181 [2.90 1.71 2.03 2.96 |1.90

SVHN | vGGie [2.09] 112 117 110 123 |152 137 075 152 |1.09|| 295|171 182 175 183 |232 212 095 248 |1.73
LeNet5 [3.52] 228 243 229 246 |1.96 226359 2.16 |2.08|| [453]3.20 331 3.16 338 |2.99 3.054.57 3.13 |2.94

MNIST | | eNet1 [3.46| 242 228 234 231 |274 1.58 288 2.94 |205|| 430|338 3.19 338 330 [3.95 227 3.70 | 414 |2.87
< Fashion| LENetl |240| 148 146 144 163 | 171 107 157 196 |141||,c 315|224 219 229 233 |275 175 216 287 |211
B ResNet20 [4.36 | 3.68 3.66 3.76 3.74 |4.25 3.41 2.96 | 423 |3.51||= 530|462 478 449 472 |5.37 437 3.79| 5.37 |4.36
2 opap | VGG16 308|225 229 232 242 (288 242 158 293 |2.28 £413] 294 291 293 316 399 308 229 395 |295
& ResNet20 |1.44| 0.75 072 091 079 |130 079 040 130 [0.72|| & 1.83| 1.21 1.09 121 115 [1.69 1.19 0.70 1.70 |1.11
LeNet5 |2.64| 1.33 141 136 135 231 136 1.67 241 |147| [3.59|2.16 224 207 227 |347 1.98 238 356 |2.21

SVHN | vGGie (272|147 154 155 158 |1.97 1.82 0.88 2.10 |1.49|| 3.18|1.94 202 199 197 |2.61 232 1.09 2.80 |1.95

1.

ATS is greater than baseline in corresponding configurations.

Colored baseline blocks represent the accuracy improvement between ATS and baseline is similar statistically, and uncolored blocks represent

2 For each selection ratio, we bold the maximum accuracy improvement value of each DNN & dataset combination.

Table 7: Model optimization effect compared with retraining
with all candidate tests.

Dataset MNIST Fashion CIFAR SVHN
Model |LeNet5 LeNetl LeNetl ResNet20 VGG16 ResNet20 LeNet5 VGG16
Ori Acc ‘ 91.01 89.95 79.40 79.78 78.32 85.35 82.39 92.30
100% tests| 6.48 6.30 5.15 8.42 8.59 2.76 7.25 4.40
10% ATS 4.53 4.30 3.15 5.30 4.13 1.83 3.59 3.18
Imp% ‘ 69.9% 68.3% 61.2% 62.9% 48.1% 66.2% 49.5% 72.1%

constructed test set. The accuracy improvement is shown in Tab. 7
Row 100% tests. Refer to Tab. 6, we show the accuracy improve-
ment when use ATS select 10% test cases from the candidate set,
denoted as 10% ATS. And in the last row, we calculated the im-
provement ratio of 10% ATS to 100% tests. The results show that
for DNN testing, an appropriate test case selection method could
optimize the DNN model with a much lighter labeling cost.

Based on the experimental results and discussion, we draw the
conclusion that the adaptive test selection method ATS could select
test cases from a massive unlabeled dataset automatically. The test
set selected by ATS contains numerous faults with diverse types.
From the results of RQ3, we found that such a test set could en-
hance the DNN effectively and efficiently.

6.2 Comparison with Active Learning

Active learning (AL) is a subfield of machine learning (ML) in which
a learning algorithm aims to achieve good accuracy with fewer
training samples by interactively querying the oracles to label new
data points [50, 66]. Thus, both AL and test case selection attempt
to overcome the labeling bottleneck by selecting data from an un-
labeled candidate set.

82

Although the design motivation of the two technologies over-
laps slightly, it is worth emphasizing that there are inherent differ-
ences between test selection and active learning. The kernel pur-
pose of AL is to obtain a model of better performance with less
ground truth query efforts. However, from the perspective of DNN-
driven system testing, ATS focuses on the testing and debugging
process of a pre-trained model, which aims to expose unpredicted
behaviors and to enhance the model. To this end, we implement
the research experiments of faults detection rate and faults diver-
sity in RQ1&RQ2.

Furthermore, in evaluation, we choose a representative AL method,
namely Maxp, as one of the test prioritization baseline [19, 52]. It is
almost the most commonly applied uncertainty-sampling strategy
in active learning [66], which employs the same way of ATS to mea-
sure input uncertainty. The experimental results show that com-
pared with random sampling, Max-p is effective as a selection method.
Meanwhile, ATS outperforms Maxp under most of the model-dataset
combinations because we design an adaptive selection strategy to
overcome the weakness of priority-based selection.

6.3 Threats to Validity

Subject selection. The selection of training datasets and DNN
models could be a threat to validity. We alleviate this threat by em-
ploying large-scale datasets and four well-designed DNN models
in the experiment. Further, for each studied dataset, we employed
two DNN models with different numbers of neurons and architec-
ture to evaluate the performance of ATS. However, some of the ex-
periment results may not be perfectly generalized to other datasets
and DNN models.

Data simulation. Further, we employ augmented data to simu-
late the unseen inputs for DNNs, which may cause another threat.
Although the augmented operators are common data noises in the

Adaptive Test Selection for Deep Neural Networks

virtual environment, it is impossible to guarantee that the distri-
bution of the real unseen input is the same as our simulation. Ad-
ditional experiments based on real unseen inputs needs to be con-
ducted in future work.

7 RELATED WORKS

This section introduces the related works on two aspects: the test-
ing of deep learning systems and adaptive random testing.

7.1 The Testing of Deep Learning Systems

To measure the test adequacy of deep learning systems, several
test criteria have been proposed. Pei et al. [49] proposed the first
white-box testing framework DeepXplore, which aims to identify
and generate the corner-case inputs that may induce different be-
haviors over different DNNs. Ma et al. [41] further refined the idea
of coverage and proposed fine-grained multi-layer testing criteria
to guarantee the quality of the model entirely. Based on the mu-
tation test, Ma et al. [29, 42] proposed DeepMutation and Deep-
Mutation++ to evaluate the quality of datasets with model-level
mutation operators.

Based on the above coverage criteria, different DNN test appli-
cation techniques are proposed. Tian et al. [59] presented DeepTest
to generate test cases by maximizing the number of activated neu-
rons. Similarly, Zhang et al. [67] give an adversarial network to
generate different weather conditions driving scenes to increase
the diversity of datasets.

However, as pointed out in the introduction section, many exist-
ing testing techniques give less consideration to the characteristic
of the DNN-driven system, which results in the difference between
the improvement of the DNN system and the repair of the tradi-
tional software system. This is why recent studies [23, 27] argue
the guidance of existing testing criteria, especially the neuron cov-
erage criteria. In addition, other test case generation techniques
or prioritization techniques are difficult to give a suitable testing
criterion or are based on a low-guidance (neuron coverage) test
adequacy criterion. In this paper, the method ATS is intended to
break out of the scope of neuron coverage design and start from
the sight of the DNN-driven software system to identify and select
test suites of high model improvement capability.

7.2 Adaptive Random Testing

Test selection is a classic research topic of software testing. There
are plenty of techniques and methods are proposed for conven-
tional software systems.

Among them, one of the well-known test selection method is
Adaptive Random Testing (ART). Chen et al. [15] proposed the first
specific algorithm of this method (FSCS-ART). The core idea is to
choose a new test case, k candidates are randomly generated. For
each candidate c;, the closest previously executed test is located,
and the distance d; is determined. The candidate with the largest d;
is selected, and the other candidates are discarded. Besides, another
test selection technique, Antirandom testing [44] is also based on
the concept of distance to distribute test cases. It is almost deter-
ministic, which means it requires the number of test cases to be
chosen in advance. The core of the technology to improve random
testing efficiency is to achieve even spread test case distribution.

83

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

Therefore, a number of different methods using different intuitions
to achieve this goal have been investigated in the literature. An ex-
ample is Restricted Random Testing (RRT) [13], which is based on
the notion of adaptive exclusion, and the goal of this method is to
select the test case outside of the exclusion zones. ART by Parti-
tioning[18] uses a rather different intuition, partitioning the input
domain in essence, and allocating test cases evenly to partitions,
achieves even spread. Besides, other attempts to take advantage
of failure region contiguity, but using various other intuitions to
achieve the even spreading of test cases, including Quasi-Random
Testing [17], and Lattice-Based ART [45].

In the testing of DNN-driven software systems, it is easy to get
enough unlabeled test cases. However, choosing proper data to la-
bel manually is always difficult. Our work aims to help testers se-
lect valuable tests from massive unlabeled tests efficiently.

8 CONCLUSION

In this paper, we propose ATS an adaptive test selection method for
Deep Neural Networks. We design a fitness computation method
to adaptively determine which test in the candidate set is more
suitable to be labeled manually. The experimental results in this pa-
per demonstrate that ATS can effectively help testers choose more
valuable test cases to improve the quality of the model. Different
from current test selection methods, ATS is guided by fault pattern
design and candidate fitness metric for test selection of Deep Neu-
ral Networks. We provide an alternative view for identifying and
selecting the tests. We expect that ATS can inspire testers to se-
lect test suites with enough diversity and faults detection ability,
which can efficiently improve the system.

ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for their insight-
ful and constructive comments. This project was partially funded
by the National Natural Science Foundation of China under Grant
Nos. 62002158, 61832009, and 61932012, and the Science, Technol-
ogy and Innovation Commission of Shenzhen Municipality (No.
CJGJZD20200617103001003).

REFERENCES

[1] [n.d.]. Amazon promises fix for creepy Alexa laugh - BBC News. https://www.
bbc.com/news/technology-43325230. (Accessed on 08/23/2021).

[2] [nd.]. A Google self-driving car caused a crash for the first time - The

Verge. https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-

crash-report. (Accessed on 09/04/2021).

[n.d]. Tesla’ s Latest Autopilot Death Looks Just Like a Prior Crash

| WIRED. https://www.wired.com/story/teslas-latest-autopilot-death-looks-

like-prior-crash/. (Accessed on 09/04/2021).

Paul Eric Ammann and John C Knight. 1988. Data diversity: An approach to

software fault tolerance. leee transactions on computers 37, 4 (1988), 418-425.

Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,

Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia

Bertolino, et al. 2013. An orchestrated survey of methodologies for automated

software test case generation. Journal of Systems and Software 86, 8 (2013), 1978—

2001.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473 (2014).

Arlinta C Barus, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Robert Merkel, and

Gregg Rothermel. 2016. A cost-effective random testing method for programs

with non-numeric inputs. IEEE Trans. Comput. 65, 12 (2016), 3509-3523.

Peter G Bishop. 1993. The variation of software survival time for different oper-

ational input profiles (or why you can wait a long time for a big bug to fail). In

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing.
IEEE, 98-107.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint

=

arXiv:1604.07316 (2016).

[10] Otto Bretscher. 1997. Linear algebra with applications. Prentice Hall Eaglewood
Cliffs, NJ.

[11] Paulo MS Bueno, Mario Jino, and W Eric Wong. 2014. Diversity oriented test

data generation using metaheuristic search techniques. Information Sciences 259
(2014), 490-509.

[12] FT Chan, Tsong Yueh Chen, IK Mak, and Yuen-Tak Yu. 1996. Proportional sam-

pling strategy: guidelines for software testing practitioners. Information and

Software Technology 38, 12 (1996), 775-782.

Kp Chan, Ty Chen, and D Towey. 2006. Restricted random testing: Adaptive

random testing by exclusion. International Journal of Software Engineering &

Knowledge Engineering 16, 4 (2006), 553-584.

[14] Junjie Chen, Ming Yan, Zan Wang, Yuning Kang, and Zhuo Wu. 2020. Deep

neural network test coverage: How far are we? arXiv preprint arXiv:2010.04946

(2020).

Tsong Yueh Chen, Hing Leung, and I. K. Mak. 2004. Adaptive Random Testing.

(2004).

[16] Tsong Yueh Chen, R Merkel, PK Wong, and G Eddy. 2004. Adaptive random test-
ing through dynamic partitioning. In Fourth International Conference onQuality
Software, 2004. QSIC 2004. Proceedings. IEEE, 79-86.

[17] Tsong Yueh Chen and Robert G. Merkel. 2007. Quasi-Random Testing. IEEE
Transactions on Reliability 56 (2007), 562-568.

[18] T.Y.Chen,R. G. Merkel, P. K. Wong, and G. Eddy. 2004. Adaptive random testing
through dynamic partitioning. In Quality Software, 2004. QSIC 2004. Proceedings.
Fourth International Conference on.

[19] Aron Culotta and Andrew McCallum. 2005. Reducing labeling effort for struc-
tured prediction tasks. In AAAL Vol. 5. 746-751.

[20] Jack Cuzick. 1985. A Wilcoxon-type test for trend. Statistics in medicine 4, 1
(1985), 87-90.

[21] L De Capitani and D De Martini. 2011. On stochastic orderings of the Wilcoxon

rank sum test statistic—with applications to reproducibility probability estima-

tion testing. Statistics & probability letters 81, 8 (2011), 937-946.

Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2013.

Coverage-based test case prioritisation: An industrial case study. In 2013 IEEE

Sixth International Conference on Software Testing, Verification and Validation.

IEEE, 302-311.

Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu

Chen. 2020. DeepGini: prioritizing massive tests to enhance the robustness of

deep neural networks. In Proceedings of the 29th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis. 177-188.

George B Finelli. 1991. NASA software failure characterization experiments.

Reliability Engineering & System Safety 32, 1-2 (1991), 155-169.

Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, and Azriel Levy. 1973. Founda-

tions of set theory. Elsevier.

[26] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:

differential fuzzing testing of deep learning systems. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering. 739-743.

Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,

and Miryung Kim. 2020. Is neuron coverage a meaningful measure for testing

deep neural networks?. In Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 851-862.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770-778.

[29] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. Deep-

Mutation++: A Mutation Testing Framework for Deep Learning Systems. In

2019 34th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE). IEEE, 1158-1161.

Gunel Jahangirova and Paolo Tonella. 2020. An Empirical Evaluation of Muta-

tion Operators for Deep Learning Systems. In 2020 IEEE 13th International Con-

ference on Software Testing, Validation and Verification (ICST).

Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and TH Tse. 2009. Adaptive ran-

dom test case prioritization. In 2009 IEEE/ACM International Conference on Auto-

mated Software Engineering. IEEE, 233-244.

[32] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System

Testing Using Surprise Adequacy. In 2019 IEEE/ACM 41st International Confer-

ence on Software Engineering (ICSE).

A. Krizhevsky and G. Hinton. 2009. Learning multiple layers of features from

tiny images. Handbook of Systemic Autoimmune Diseases 1, 4 (2009).

[34] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2009. CIFAR10. https:
//www.cs.toronto.edu/~kriz/cifar.html.

[13

(15

[22

[23

[24

[25

[27

[28

[30

(31

[33

84

(35]

[36]

[37]

(38]

(39]

S
2

[41]

[42]

[43]

[44]
[45]

[46

[47]

[48]

[49

[50]
[51]

[52

(53]
[54]

[55]

[56]

[57]

[58]
[59]

[60

(1]

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu

Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. 2016. Adversarial examples
in the physical world.

Hugo Larochelle, Yoshua Bengio, Jérome Louradour, and Pascal Lamblin. 2009.
Exploring strategies for training deep neural networks. Journal of machine learn-
ing research 10, 1 (2009).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—
2324.

David D Lewis and William A Gale. 1994. A sequential algorithm for training
text classifiers. In SIGIR’ 94. Springer, 3-12.

Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage
criteria for neural networks could be misleading. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER). IEEE, 89-92.

Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lii. 2019.
Boosting operational DNN testing efficiency through conditioning. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 499-509.

Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120-131.

Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao
Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. Deepmutation: Mutation testing
of deep learning systems. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 100-111.

Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon.
2021. Test selection for deep learning systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 30, 2 (2021), 1-22.

Y. K. Malaiya. 1995. Antirandom testing: getting the most out of black-box test-
ing. In International Symposium on Software Reliability Engineering.

Johannes Mayer. 2005. Lattice-based adaptive random testing. In IEEE/ACM In-
ternational Conference on Automated Software Engineering.

Agnieszka Mikolajczyk and Michat Grochowski. 2018. Data augmentation for
improving deep learning in image classification problem. In 2018 international
interdisciplinary PhD workshop (IIPhDW). IEEE, 117-122.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Ce-
lik, and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372-387.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. Getmobile Mobile Comput-
ing & Communications 22, 3 (2017).

Burr Settles. 2009. Active learning literature survey. (2009).

Burr Settles. 2011. From Theories to Queries: Active Learning in Practice. In
Active Learning and Experimental Design workshop In conjunction with AISTATS
2010 (Proceedings of Machine Learning Research), Isabelle Guyon, Gavin Cawley,
Gideon Dror, Vincent Lemaire, and Alexander Statnikov (Eds.), Vol. 16. PMLR,
Sardinia, Italy, 1-18. https://proceedings.mlr.press/v16/settles11a.html

Burr Settles and Mark Craven. 2008. An analysis of active learning strategies
for sequence labeling tasks. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing. 1070-1079.

Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data aug-
mentation for deep learning. Journal of Big Data 6, 1 (2019), 1-48.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Satinder P Singh, Michael J Kearns, Diane J Litman, and Marilyn A Walker. 2000.
Reinforcement learning for spoken dialogue systems. In Advances in Neural In-
formation Processing Systems. 956—962.

Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang. 1993. Introduc-
tion to linear algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA.
Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill,
and Rob Ashmore. 2019. DeepConcolic: Testing and debugging deep neural net-
works. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 111-114.

Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill,
and Rob Ashmore. 2019. Testing Deep Neural Networks. arXiv:cs.LG/1803.04792
Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2017. DeepTest: Auto-
mated Testing of Deep-Neural-Network-driven Autonomous Cars. (2017).
Dave Towey. 2007. Adaptive random testing; ubiquitous testing to support ubig-
uitous computing. In Proceedings of the Korea Society of Information Technology
Applications Conference. The Korea Society of Information Technology Applica-
tions, 138-138.

Lee] White and Edward I Cohen. 1980. A domain strategy for computer program
testing. IEEE transactions on software engineering 3 (1980), 247-257.

Adaptive Test Selection for Deep Neural Networks

[62] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/cs.LG/1708.07747

Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jian-
jun Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-
guided fuzz testing framework for deep neural networks. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
146-157.

Christopher J.C. Burges Yann LeCun, Corinna Cortes. 1998. MNIST. http://yann.
lecun.com/exdb/mnist/.

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software testing, verification and reliability 22, 2

(63

[64

(65

85

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

(2012), 67-120.

Xueying Zhan, Huan Liu, Qing Li, and Antoni B Chan. [n.d.]. A Comparative
Survey: Benchmarking for Pool-based Active Learning. ([n.d.]).

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 132-142.
Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A survey on unsu-
pervised outlier detection in high-dimensional numerical data. Statistical Anal-
ysis and Data Mining: The ASA Data Science Journal 5, 5 (2012), 363-387.

