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Abstract
Perceiving the complex driving environment precisely is crucial
to the safe operation of autonomous vehicles. With the tremen-
dous advancement of deep learning and communication technology,
Vehicle-to-Everything (V2X) collaboration has the potential to ad-
dress limitations in sensing distant objects and occlusion for a single-
agent perception system. However, despite spectacular progress,
several communication challenges can undermine the effectiveness
of multi-vehicle cooperative perception. The low interpretability
of Deep Neural Networks (DNNs) and the high complexity of com-
munication mechanisms make conventional testing techniques in-
applicable for the cooperative perception of autonomous driving
systems (ADS). Besides, the existing testing techniques, depending
on manual data collection and labeling, become time-consuming
and prohibitively expensive.

In this paper, we design and implement CooTest, the first au-
tomated testing tool of the V2X-oriented cooperative perception
module. CooTest devises the V2X-specificmetamorphic relation and
equips communication and weather transformation operators that
can reflect the impact of the various cooperative driving factors to
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produce transformed scenes. Furthermore, we adopt a V2X-oriented
guidance strategy for the transformed scene generation process and
improve testing efficiency. We experiment CooTest with multiple
cooperative perception models with different fusion schemes to
evaluate its performance on different tasks. The experiment results
show that CooTest can effectively detect erroneous behaviors under
various V2X-oriented driving conditions. Also, the results confirm
that CooTest can improve detection average precision and decrease
misleading cooperation errors by retraining with the generated
scenes.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.
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1 Introduction
Autonomous driving has attracted increasing attention due to its
great potential to reduce the burden on drivers and improve traffic
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safety [38, 59]. As an exemplar of safety-critical intelligent soft-
ware, autonomous driving systems rely on perception components
to understand information about the surrounding environment and
communicate perception results to downstream decision modules
to enable smooth autonomous operation. Recent advancements in
deep learning and sensor technology have improved the perfor-
mance of modern perception systems [36, 50]. Despite the remark-
able progress, single-agent perception systems still yield inaccu-
rate or incomplete perception results due to inherent single-view
constraints (e.g., occlusion and distant sparse sensor observation),
which can further lead to incorrect system behavior or even se-
vere accidents [5, 8]. An illustration of this issue involves an Uber
autonomous vehicle that collided with a pedestrian crossing the
street. The vehicle’s perception system initially misidentified the
pedestrian at a distance owing to single-view constraints. When
the system eventually recognized the pedestrian, it was too late to
avoid the collision [3].

Vehicle-to-Everything (V2X) communication has recently re-
ceived significant attention as a solution to avoid the inherent
limitations of single-agent sensing [16, 41]. As a key technology
in V2X autonomous driving, multi-agent cooperative perception
strategies enable multiple connected agents to share complemen-
tary perceptual information with each other, thus providing more
accurate and comprehensive perception [49, 56]. Various promi-
nent manufacturers and organizations, such as Ford and Baidu,
are actively developing V2X platforms to enhance and ensure the
performance of autonomous driving perception [4, 6]. However,
when deployed in real-world environments, such communication
systems across multiple intelligent agents could encounter intricate
communication challenges, such as lossy communication [43] and
communication latency [49]. In practice, corrupted or misaligned
shared perception information from cooperative vehicles could
hardly assist the ego agent in understanding the surroundings or
even misleading it into making incorrect decisions. Based on the
above reasons, it is crucial to design a test approach for V2X coop-
erative perception systems.

Software engineering researchers have proposed several testing
techniques to assess the potential risks of perception systems in
real-world scenarios [15, 21, 48]. However, existing testing tech-
niques only focus on testing the single-agent perception system
rather than considering specific communication issues during the
cooperation process. Moreover, practitioners are required to man-
ually collect data obtained from connected vehicles during real-
world road testing while covering various scenarios against diverse
adverse communication conditions demands substantial resource
consumption [37]. Furthermore, manual labeling for collected data
(e.g., images, point clouds, etc.) from various connected vehicles is a
laborious and time-consuming task requiring a massive workforce
to manually examine the visualization results [32].

To bridge this gap, we propose a systematic V2X-oriented au-
tomated testing approach and implement it into a tool , namely
CooTest. The primary objective of CooTest is to automate the testing
of cooperative perception systems in self-driving cars and subse-
quently facilitate their performance improvement through retrain-
ing. CooTest is built upon the theory of metamorphic testing to
reduce manual data collection and labeling efforts. It implements

the metamorphic relation with two families of transformation oper-
ators that can reflect the characteristics of practical V2X cooperative
perception scenes. CooTest leverages a V2X-oriented guided ap-
proach in the testing process to efficiently generate testing cases
derived from seed testing data utilizing transformation operators.
Furthermore, CooTest leverages transformation-specific metamor-
phic relations between the transformed data and seed data to detect
the cooperative perception faults automatically.

We conduct experiments involving six state-of-the-art coopera-
tive perception models with distinct information fusion schemes
to assess the efficacy of CooTest. In the experiment, all transforma-
tion operators implemented by CooTest proved effective on models
across various fusion schemes during the testing process. Subse-
quent experimental findings underscore that CooTest with V2X-
oriented transformation guidance can generate more failed tests
on cooperative perception models than random strategy guidance.
Moreover, our experiments reveal that retraining the cooperative
perception model with generated data can substantially decrease
the misleading cooperation errors and enhance the performance
by 6.7% on average, as measured by average precision (AP).

The main contributions of this paper are summarized as follows:

• We propose an automated testing approach for cooperative
perception systems based on the metamorphic testing the-
ory. We implement metamorphic relations with two families
of transformation operators designed to simulate influen-
tial factors in application scenarios, thereby generating test
scenes. Under the V2X-oriented transformation guidance,
CooTest can detect cooperative-related faults for cooperative
perception systems and enhance them efficiently.
• We implement the proposed approach into the automated
testing tool, CooTest. To the best of our knowledge, CooTest
is the first systematic and automated testing tool for V2X-
oriented cooperative perception systems. To support the
open science community, we have made the source code
available1 and released the generated transformed data.
• We utilize CooTest to assess six typical cooperative percep-
tion models and find various misleading cooperation errors,
some of which may lead to potentially fatal collisions. The
results show that the synthetic test cases can be used for
retraining and making cooperative perception systems more
robust to various corner cases.

2 Cooperative Driving Systems
2.1 V2X in Autonomous Driving
Autonomous driving systems is a complex system composed of
various subsystems that operate sequentially. Figure 1 shows the
architecture of an autonomous driving software system based on
modern designs like Autoware [1] and Apollo [2]. The perception
module is responsible for processing environmental information
collected by various sensors to achieve functionalities such as object
detection and tracking. Upon receiving the processed perception
information, the decision and planning module estimates future
trajectories for the detected obstacles across both temporal and

1https://github.com/meng2180/CooTest
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Figure 1: The architecture of cooperative perception systems
in autonomous driving.

spatial dimensions. Finally, the control module calculates and exe-
cutes the planned trajectory with lateral and longitudinal control.
The perception system forms the fundamental basis of autonomous
driving, which is essential for understanding the environment and
ensuring the smooth operation of the entire system.

Considering autonomous driving systems are operated in safety-
critical contexts and perception systems play a crucial role, most
industrial manufacturers leverage the V2X technique to overcome
inherent single-view perception limitations in single-agent sens-
ing (e.g., occlusions and short-range perceiving capability) and
improve the overall performance [16]. V2X denotes vehicles re-
ceiving shared information from other traffic elements via wireless
communication technology [58]. The received information is rec-
tified, matched, and integrated with ego vehicle sensing data into
comprehensive and complementary perception information. This
integrated data is then utilized by the perception system as input
to make more accurate environmental predictions. Such a process
involving multi-agent collaborative perception lays the foundation
of the V2X autonomous driving workflow and significantly impacts
the final ADS behaviors, as shown in Figure 1. V2X cooperative
autonomous driving has demonstrated outstanding performances
in intelligent traffic systems, encompassing tasks such as road inter-
section management [14] and the design of vehicle platooning [34].

2.2 V2X Cooperative Perception with On-road
Agents

Owing to the inherent constraints associated with the camera and
LiDAR devices, the issues of occlusions and long-distance percep-
tion pose considerable challenges for autonomous systems designed
for single vehicles [57]. These challenges can give rise to severe
consequences within intricate traffic scenarios. In contrast, cooper-
ative perception systems can unlock the potential for multi-vehicle
detection, effectively addressing the constraints associated with
single-vehicle perception. By leveraging the V2X communication
technology, different connected vehicles and infrastructures can
share their sensing information and thus provide multiple view-
points for the same obstacle to compensate each other [26, 30].

V2X cooperative perception methods can be divided into three
categories based on the information fusion stage: early fusion, late
fusion, and intermediate fusion [23]. Early fusion techniques directly

share raw data with connected agents located within the communi-
cation range. Then, the ego vehicle utilizes the aggregated data to
predict detected objects [10]. In contrast, late fusion methods trans-
mit detection outputs and integrate received proposals to formulate
a coherent prediction [45]. To meet the bandwidth and detection
accuracy requirements, researchers have delved into intermediate
fusion [9, 49]. Intermediate fusion encodes the sparse raw data into
dense vector representations for sharing.

V2X cooperative perception system holds the potential to en-
hance the safety and reliability of autonomous vehicles through
the exchange of information with surrounding vehicles. However,
it may face challenges from environmental factors like adverse
weather (e.g., rain, snow, fog, etc.). Additionally, cooperative percep-
tion may introduce communication delays and unavoidable errors
in relative pose among vehicles during data transmission. There-
fore, it is critical to ensure the quality of the V2X communication
systems before deploying them in a real-world scenario.

3 Approach
In this section, we present the design and implementation of CooTest,
a tool devised for automatically testing the V2X-oriented cooper-
ative perception module within ADS. In Figure2, the developer
initiates the process by selecting seeds from real-world data. Subse-
quently, CooTest adopts the metamorphic relation that we defined
specifically for the cooperative perception systems. CooTest can
generate new test scenes based on the seed by applying commu-
nication and weather transformation to simulate practical V2X
application scenarios. Guided by V2X-oriented guidance, CooTest
efficiently selects test data most likely to expose potential defects in
the model. The transformed test scenes are then generated to assess
the robustness of the cooperative perception model in autonomous
driving. Finally, CooTest generates test reports containing AP and
misleading cooperation errors based onmodels’ predicted bounding
boxes and gives feedback on model perception robustness. More-
over, CooTest can enhance the model’s cooperative perception per-
formance through retraining with generated transformed scenes.

3.1 Formalization and Definition
Cooperative errors in complex cooperative perception systems can
arise from multiple components, including the ego vehicle, coopera-
tive vehicles or infrastructures, and the information fusion process.
The most basic reliability requirement of V2X systems is that the
perception performance of the ego vehicle should not be impaired
by the cooperative perception system, especially for close-range
object detection [27]. However, due to communication challenges
(Section 2.2), shared information from cooperative vehicles may
provide limited assistance to the ego agent in understanding sur-
roundings, and in certain situations, it might even share misleading
information. In this case, even if the sensors equipped on the ego
vehicle provide correct environment understanding, the ego vehi-
cle’s perception system will still prioritize the inaccurate shared
information from collaborators over the correct one. In this paper,
we refer to this error due to incorrect cooperative perception as
misleading cooperation error. Before giving a formal definition of
misleading cooperation error, we give a formal representation of
V2X-oriented cooperation perception.
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Figure 2: The Workflow of CooTest.

3.1.1 Formal Representation. We first formalize the V2X-oriented
cooperative perception system and the ego vehicle perception sys-
tem. Consider𝑛 cooperative vehicles and an ego vehicle in the scene.
Let 𝑋𝐸 and 𝑋𝑖 represent the observation of the ego vehicle and the
𝑖-th connected vehicle, respectively. The cooperative perception
systems CP can be represented as:

Φ𝐶𝑃 (𝑋𝐸 , {𝑋 𝑗 }𝑛𝑗=1) = {(𝑠
𝐶𝑃
𝑖 , 𝑏𝐶𝑃𝑖 ) |𝑖 ∈ [𝑛𝐶𝑃 ]}

Similarly, the ego vehicle perception system can be represented as:

Φ𝐸 (𝑋𝐸 ) = {(𝑠𝐸𝑖 , 𝑏
𝐸
𝑖 ) |𝑖 ∈ [𝑛𝐸 ]}

where 𝑥 ∈ {𝐸,𝐶𝑃} and Φ𝑥 is the perception network of perception
system.𝑏𝑥

𝑖
, 𝑠𝑥
𝑖
represent the 𝑖-th 3D bounding box and its confidence

of the perception results, respectively. [𝑛𝑥 ] = 1, 2, · · · , 𝑛𝑥 and 𝑛𝑥
represent the number of 3D bounding boxes detected by the per-
ception system. We leverage 𝑆𝑥 = ∪𝑛𝑥

𝑖=1𝑠
𝑥
𝑖
, 𝑥 ∈ {𝐸,𝐶𝑃} representing

the set of all 𝑠𝑥
𝑖
.

3.1.2 Misleading Cooperation Error (MCE). Misleading coopera-
tion error occurs (1) when an ego vehicle accurately perceives
its surroundings during operation, and (2) the collaborative per-
ception system is misled by the inaccurate shared information to
make incorrect perception predictions. Here, we define the mis-
leading cooperation error of a cooperative perception system CP.
Let 𝑏𝑇

𝑖
represent the 𝑖-th ground-truth bounding box and 𝑛𝑇 rep-

resent the number of ground-truth 3D bounding boxes. We use
𝐵𝑥 = ∪𝑛𝑥

𝑖=1𝑏
𝑥
𝑖
, 𝑥 ∈ {𝑇, 𝐸,𝐶𝑃} representing the set of all 𝑏𝑥

𝑖
. A correct

cooperative perception method should detect the bounding box,
which is ground truth and successfully detected by the ego vehicle.
Thus, a misleading cooperation error occurs if CP cannot detect
the ground-truth bounding box, which is successfully detected by
the ego vehicle.
Definition. Consider a cooperative perception system CP. CP
makes misleading cooperation error if

∃𝑏𝑇𝑖 ∈ 𝐵𝑇 , 𝑠 .𝑡 . 𝐷𝐸 (𝑏𝑇𝑖 ) ∧ (¬𝐷𝐶𝑃 (𝑏𝑇𝑖 ))
𝐷𝐸 and 𝐷𝐶𝑃 are the criteria to decide whether the ego vehicle
system and the cooperative perception system CP successfully
detect the bounding box, respectively. Such misleading cooperation
errors can diminish the precision of the cooperative perception

system, thereby influencing the safety and reliability of autonomous
driving. To this end, this paper focuses on misleading cooperation
error and their impact on the overall perception performance of
cooperative systems.

3.2 Metamorphic Testing for Cooperative
Perception System

A significant challenge in testing the intricate cooperative percep-
tion system lies in manually creating the system’s specifications.
Moreover, annotating LiDAR-captured point clouds requires a sig-
nificant amount of time. Cooperative perception entails all con-
nected autonomous vehicles participating in data collection, thus
demanding a greater labeling effort compared to single-agent sens-
ing. To overcome these issues, we leverage metamorphic relations
(MRs) [11, 12] between the cooperative perception results across the
original test data and its transformed test data to create the test or-
acle. The central idea is the ability to establish relationships among
the model’s detection outcomes under specific transformations. The
violation of MRs often signals potential defects.

CooTest is designed to realize specific MRs designed for V2X
communication systems. Specifically, given a seed test suite T𝑜𝑟𝑖𝑔
collected from connected vehicles, and a transformation operator
𝛾 ∈ O which can generate various transformed data from each
original data 𝑆 ∈ T𝑜𝑟𝑖𝑔 , the MR to test cooperative perception
system CP with additional transformed point clouds adopted in
this paper can be formalized as follows:

∀𝑆 ∈ T𝑜𝑟𝑖𝑔 ∧ ∀𝛾 ∈ O, 𝜁 {CP⟦𝛾 (𝑆)⟧,CP⟦𝑆⟧} (1)

where 𝜁 is a criterion asserting the equality of CP results. The
given MR is defined such that no matter how the transformed data
is synthesized by applying specifically designed transformation
operators denoted as 𝛾 on seed data 𝑆 , the resulting object detec-
tion outcomes are anticipated to maintain consistency with those
from the original data. Thus, if a CP infers a set of 3D bounding
boxes 𝐵𝑜 for a seed data 𝑆 and infers another set of boxes 𝐵𝑐 for a
corresponding transformed data 𝑆𝑐 generated by applying transfor-
mation 𝛾 on 𝑆 , 𝐵0 and 𝐵𝑐 should be identical; otherwise, erroneous
predictions can be revealed by checking the failure of this MR.
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However, asserting the strict equality of outputs fromCP is often
too stringent because there is usually no single correct detection
result for a given test case, which may result in many false posi-
tives. To introduce more permissiveness into the MRs, the equality
criteria 𝜁 is derived from AP [17]. The AP score is computed by con-
sidering both precision and recall values, as explained in Section 4.3.
By utilizing V2X-oriented MRs, CooTest can straightforwardly vali-
date their satisfaction within the testing process of CP by verifying
against the test oracle. Based on this, CooTest further identifies mis-
leading cooperative errors by automatically verifying the accuracy
of the ego vehicle’s perception results In this context, the design
and implementation of transformation operators become critical
for optimizing the performance of CooTest.

3.3 Transformation Operators
V2X communication systems operating in the real world frequently
face unexpected environmental conditions. These conditions could
give rise to subtle variations in the signals during the commu-
nication process, causing the ego vehicle to receive low-quality
shared information and potentially resulting in unexpected behav-
iors. Therefore, V2X communication systems are required to be
robust against different corruption signals in various conditions.

To simulate practical application scenarios as much as possible,
we investigate the common challenge for different V2X communi-
cation systems and design seven different realistic V2X-oriented
transformation operators: communication latency (CT), spatial mis-
alignment (SM), global feature lossy communication (GL), channel-
specific lossy communication (CL), rain (RN), snow (SW), and fog
(FG). These transformations can be classified into two categories:
communication transformation and weather transformation. We
implement these transformation operators and integrate them into
CooTest. The detailed definition and design are as follows:

3.3.1 Communication Transformation. Due to the nature of the
connectivity in the context of V2X, factors such as channel er-
rors, network congestion, and delay violations can contribute to
communication issues during data transmission within the wireless
network [43]. These communication issues can be divided into three
categories, including communication latency, spatial misalignment,
and lossy communication [39]. Therefore, we design the correspond-
ing communication transformation operators for each category and
leverage them to simulate different real-world V2X-oriented com-
munication issues. The specific operators are designed as follows:
Communication Latency. V2X communication demands well-
synchronized data transmission across connected vehicles to ensure
the quality and timeliness of shared sensory information. In practi-
cal scenarios, limited communications bandwidth [49] or transmis-
sion failure [56] may cause a time delay in a participant, resulting
in communication latency. We simulate the communication delay
during the data transmission process, which can be expressed as:

Δ𝑀𝑒𝑔𝑜 (𝑞) = 𝑀𝑖
𝑒𝑔𝑜 −𝑀𝑐𝑎𝑣𝑖 (2)

where𝑀𝑖
𝑒𝑔𝑜 and𝑀𝑐𝑎𝑣𝑖 respectively represent the timestamp when

the ego vehicle receives the data packet 𝑞 sent by the 𝑖-th connected
vehicle and the corresponding data packet 𝑞 collected by the 𝑖-th
connected vehicle, respectively. Δ𝑀𝑒𝑔𝑜 can represent a time delay

in transmitting data from the 𝑖-th connected autonomous vehicle
to the ego vehicle.
Spatial Misalignment. V2X communication system requires the
determination of a positional transformation matrix between par-
ticipants to ensure that local perception results from multiple par-
ticipants can be matched efficiently. However, obstacles or GPS
signal interference [40] in the real world will inevitably interfere
with obtaining precise positioning information, leading to data
misalignment during aggregation and performance degradation in
cooperative perception. The transformation from the connected
vehicle coordinates to the ego vehicle can be expressed as:

𝑝𝑡cavprojected = 𝑇cav→ego · 𝑝𝑡cav (3)

where 𝑝𝑡cav is the pose [𝑥,𝑦, 𝑧, 1]T in 𝑖-th connected autonomous
vehicle at the time 𝑡 , and 𝑇cav→ ego ∈ R4×4 is coordinate trans-
formation matrix from connected vehicle to ego vehicle. In our
experiments, we leverage rotation and translation to simulate spa-
tial misalignment between the ego vehicle and connected vehicles.
Lossy Communication.Within urban traffic scenarios, various
random factors, such as obstacle presence, rapid and fluctuating
vehicle speeds, as well as varying distances between vehicles, may
lead to lossy communication when transmitting a set of shared
feature values [7, 43]. To simulate the realistic and complex lossy
communication mechanisms in the real world, we designed two
transformations based on the proposed communication models [33]
to simulate different lossy types in real-world V2X communication.
The specific details are as follows:
• Global Feature Lossy Communication. The shared fea-
ture after V2X metadata sharing is reshaped from a 3D ten-
sor to a 2D matrix first. Subsequently, the reshaped feature
undergoes random selection based on the global random
probability 𝑝𝑔 and is replaced by random noise within the
range of the original shared feature values.
• Channel-specific Lossy Communication. Different from
simulated lossy communication on the reshaped global fea-
ture, the channel-specific lossy type simulates lossy commu-
nication across distinct channels. Specifically, given a shared
feature 𝐶 ×𝐻 ×𝑊, ⌊𝑝𝑐 ∗𝐶⌋ channels are randomly selected
by the random probability 𝑝𝑐 . Subsequently, these selected
channels are replaced by random noise, maintaining values
within the range of the original shared feature.

Eventually, the simulated lossy feature is transformed back to its
initial shape of𝐶 ×𝐻 ×𝑊 before being received by the ego vehicle.

3.3.2 Weather Transformation. Adverse weather conditions can
induce measurement distortions in the sensors of each connected
vehicle, presenting a substantial challenge for cooperative percep-
tion systems reliant on redundant information [25]. For instance,
droplets in the environment can decrease the detected object reflec-
tivity and cause scattered points due to laser backscattering and
absorption, leading to a reduction in the perceived quality of Li-
DAR point clouds. Therefore, we design the corresponding weather
transformation operators to simulate different real-world weather.

In this study, we consider three representative adverse weather
conditions:Rain, Snow, and Fog, as they are common in real-world
driving scenarios. To achieve this, we utilize domain-specific physi-
cal models as outlined in [31] to simulate the characteristics of each
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weather condition. The realism of these models has been validated
in several benchmark studies within the community [19, 35]. Dur-
ing each transformation, we fix the environmental parameters and
run the transformation for each connected vehicle to ensure that
the connected vehicles are in an identical weather environment.

Algorithm 1 V2X-oriented Guided Scene Transformation
Input： The tested model CP, the transformation operator set
A, the set of seed scene T𝑜𝑟𝑖𝑔 , the number of generated tests
𝑛𝑢𝑚𝑔𝑒𝑛

Output： Generated high-quality tests 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠
1: 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠 ← ∅
2: for 𝑆 in T𝑜𝑟𝑖𝑔 do
3: for 𝑎 in A do
4: 𝑆

′
= 𝐴𝑝𝑝𝑙𝑦𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑆, 𝑎)

5: 𝑆𝐸 , 𝑛𝐸 , 𝑛𝐶𝑃 , 𝐵𝐸 , 𝐵𝐶𝑃 = 𝐺𝑒𝑡𝑃𝑟𝑒𝑑 (CP, 𝑆 ′ )
6: 𝐺𝑢𝑖𝑝𝑟𝑖 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐺𝑢𝑖𝑃𝑟𝑖 (𝑆𝐸 , 𝑛𝐸 , 𝑛𝐶𝑃 , 𝐵𝐸 , 𝐵𝐶𝑃 )
7: 𝑆𝑝𝑐 = 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑆𝑐𝑒𝑛𝑒 (𝑆 ′ ,𝐺𝑢𝑖𝑝𝑟𝑖 )
8: if 𝑙𝑒𝑛(𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠) < 𝑛𝑢𝑚𝑔𝑒𝑛 then
9: 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆𝑝𝑐)
10: else
11: if 𝑆𝑝𝑐.𝐺𝑢𝑖𝑝𝑟𝑖 > 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠 [−1] .𝐺𝑢𝑖𝑝𝑟𝑖 then
12: 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠 [−1] = 𝑆𝑝𝑐

13: 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠 .𝑆𝑜𝑟𝑡𝐵𝑦𝐺𝑢𝑖𝑃𝑟𝑖 ()
14: end if
15: end if
16: end for
17: end for
18: return 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠

3.4 V2X-oriented Guided Transformation
In theory, the number of tests that each transformation operator
can generate is endless. Therefore, we must impose limitations and
guidance to ensure the quality of tests and improve the testing
efficiency. To address this, inspired by the differential testing in
traditional software testing, which leverages behavioral differences
between multiple systems to detect errors [42], we propose a novel
V2X-oriented guided transformation (VGT) strategy designed for
cooperative perception systems to bootstrap the test generation
process. The basic idea behind this guidance strategy is to maximize
the difference in environmental understanding between the ego
vehicle perception and cooperative perception, thus generating test
inputs that can confuse cooperative perception models, which can
be formalized as follows:

𝐺𝑢𝑖𝑝𝑟𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (−
𝑛𝐸∑︁
𝑖=1

𝑠𝐸
𝑖

𝑛𝐸𝑛𝐶𝑃

𝑣𝑜𝑙𝑢𝑚𝑒 (𝑏𝐸
𝑖
∩ 𝐵𝐶𝑃 )

𝑣𝑜𝑙𝑢𝑚𝑒 (𝑏𝐸
𝑖
)
) (4)

𝐺𝑢𝑖𝑝𝑟𝑖 can be considered as a measure of the possibility of the
cooperative perception system CP making misleading cooperation
errors. The larger 𝐺𝑢𝑖𝑝𝑟𝑖 means that the cooperative perception
system CP is less capable of detecting the correct bounding box
that the ego vehicle can detect. Specifically, we compute the ratio of
the intersection volume of the bounding box detected by both CP
and the ego vehicle to the volume of the bounding box 𝑏𝐸

𝑖
detected

by the ego vehicle. We weigh the ratio by the confidence 𝑠𝐸
𝑖
of the

bounding box detected by the ego vehicle to emphasize the case
that the ego vehicle detects the bounding box with high confidence
while CP does not detect this bounding box. The above value is
summed and then averaged by the number𝑛𝐸 of the bounding boxes
detected by the ego vehicle. We divide the value by the number
𝑛𝐶𝑃 of bounding boxes detected by CP to reduce the effect that
there exist two or multiple bounding boxes detected by CP overlap
with one bounding box at the same time. Finally, we normalize
the negative value of the result to quantify the rate of predicted
misleading cooperation errors. As such, we get the resulting value
𝐺𝑢𝑖𝑝𝑟𝑖 .

This guidance strategy enables CooTest to uncover more model
defects with the same testing set size, thereby improving testing
efficiency. It involves sequentially traversing the seed scenes and
randomly selecting operators for transformation, ensuring diversity
in the algorithm’s output. Algorithm 1 presents the process of V2X
scene transformation of CooTest in detail. The algorithm takes the
tested model CP, a set of communication transformation operators
A with the corresponding parameters, a seed set T𝑜𝑟𝑖𝑔 , and the
number of generated tests 𝑛𝑢𝑚𝑔𝑒𝑛 as input. Transformed tests can
retain the same oracle information as the seed after a single transfor-
mation by configuring parameters for the transformation operators
(Line 4). The core implementation process of this algorithm involves
initially transforming the seed 𝑆 and subsequently calculating the
guidance metric value based on the predictions of bounding boxes
and confidence through Equation 4 (Lines 5-7). Then, the generated
test cases will be added to 𝑔𝑒𝑛𝑇𝑒𝑠𝑡𝑠 (Lines 8-9). When the generated
quantity surpasses 𝑛𝑢𝑚𝑔𝑒𝑛 (Lines 10-15), CooTest retains tests that
are more likely to detect recognition errors.

4 Experimental Design
In this section, we introduce the experimental design, including the
dataset and cooperative perception models under test, transforma-
tion settings, and evaluation metrics in the experiments. To conduct
the experiments, we implemented the workflow of CooTest. All
experiments are performed on Ubuntu 21.10 desktop with GeForce
RTX 4070, one 16-core processor at 3.80GHz, and 32GB RAM.

CooTest is designed to systematically test the cooperation driv-
ing system, especially to verify its robustness for the V2X cooper-
ative perception module. To this end, we empirically explore the
following three research questions (RQ):

• RQ1: How effective are different transformation operators for
detecting the erroneous behaviors of cooperative perception
tasks using MRs?
• RQ2: How effectively can CooTest generate tests under the
V2X-oriented guided transformation?
• RQ3: Can CooTest improve the cooperative perceptionmodel
through retraining with transformed tests?

4.1 Dataset and Cooperative Perception Models
V2V4Real [55] is a large-scale real-world dataset for Vehicle-to-
Vehicle cooperative perception. The data is collected by cooperative
vehicles equipped with sensors, navigating through various sce-
narios. It comprises driving logs over three days, encompassing
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Figure 3: Testing results on different models with seven transformation operators.

a total of 347 km on highways and 63 km within city roads. Ad-
ditionally, it consists of 20,000 LiDAR frames, 40,000 RGB frames,
240,000 annotated 3D bounding boxes covering five classes, and
comprehensive HDMaps encompassing all the driving routes. In
this paper, we apply the proposed technique to the original test
split of the cooperative object detection dataset to detect errors
related to the V2X cooperative perception module.

Cooperative Perception Models. To assess the performance
of our techniques comprehensively, we employ six cooperative
perception models with diverse fusion schemes in our experiment,
including one early fusion model, one late fusion model, and four
state-of-the-art intermediate fusion models. All of these collabora-
tive perception models are LiDAR-based and take multi-view point
clouds as input. A brief introduction is provided as follows.

Early Fusionmodel [55] directly transmits the raw point clouds
to other collaborators, and the ego vehicle will aggregate all the data
to its own coordinate frame. This process ensures the preservation
of complete information.

Late Fusionmodel [55] detects objects using the sensor observa-
tions of connected vehicles and subsequently shares the detection
results with others. The receiving ego vehicle then applies non-
maximum suppression to generate the final outputs.

V2VNetmodel [49] proposesmulti-roundmessage passing based
on graph neural networks to achieve better perception performance.
It consists of three main stages: a convolutional network block to
produce an intermediate representation, a cross-vehicle aggregation
stage, and an output network to compute the final outputs.

V2X-ViT model [56] introduces a novel vision transformer de-
signed specifically for V2X perception. It incorporates a customized
heterogeneous multi-head self-attention module crafted for graph
attribute-aware multi-agent 3D visual feature fusion. This module is
adept at capturing the inherent heterogeneity within V2X systems.

F-Cooper model [9] employes the maxout fusion to aggregate
shared intermediate features. Data inputs undergo processing by
the voxel feature encoding layers independently to generate voxel
features. Next, spatial features are obtained locally on individual
vehicles and fused together to generate the ultimate feature maps.

AttFusion model [57] is designed to capture interactions among
features of neighboring connected vehicles, enabling the network
to focus on key observations. This pipeline is flexible and can be
seamlessly integrated with current deep learning-based detectors.

Table 1: Transformation operators and parameters used by
CooTest for generating new V2X-oriented scenes.

Types Operators Parameters Parameter Ranges

Weather

RN 𝑟𝑛 (0.1,10)

SW 𝑠𝑤 (0.1,2.4)

FG 𝑓𝑔 (200,1000)

Communication

CT 𝑐𝑡 (0,300)

CL 𝑝𝑐 (0,1)

GL 𝑝𝑔 (0,1)

SM 𝑠𝑚 = (𝑡𝑥 , 𝑟𝑦 , 𝑡𝑧 , 𝑟𝑧 )
𝑡𝑥 ∈ (-0.2,0.2), 𝑡𝑦 ∈ (-0.2,0.2),
𝑡𝑧 ∈ (-0.2,0.2), 𝑟𝑧 ∈ (-2,2),

4.2 Transformations Settings
We leverage CooTest to improve the robustness of the cooperative
detection model in adverse V2X-oriented driving conditions by
making realistic communication and weather transformations. As
described in Section 3.3, we mainly apply seven different realistic
data transformation operators: i.e., CT, SM, GL, CL, RN, SW, and FG.
In order to make our transformations realistic, each transformation
is designed to represent corresponding cooperative driving seman-
tics in real-world scenarios. The RN, SW, and FG operators use
rainfall intensity (mm/h), snowfall intensity (mm/h), and fog visibil-
ity (m) as weather transformation semantics, respectively. The CL
operator employs milliseconds (ms) as the unit for the transmission
delay in vehicle-to-vehicle communication. For the SM operator,
CooTest translates a specific distance (m) along the axis and ro-
tates a certain angle around the z-axis. For lossy communication
transformations, we leverage the global random probability 𝑝𝑔 and
the probability of choosing a channel 𝑝𝑐 to simulate various lossy
communication situations when transmitting a set of shared feature
values. In our experiment design, candidate parameters for each
transformation are shown in Table 1. Whenever the transformation
operator is applied to the original data, CooTest randomly selects
the parameters for a specific transformation.

4.3 Evaluation Metric
The primary task of cooperative perception is to collaboratively de-
tect objects across multi-view 3D point clouds collected by the ego
vehicle and the connected vehicles. Identified objects are annotated
with a 3D bounding box. The central concept for evaluating the
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3D object detection performance is Intersection over Union (IoU),
which compares the coordinates of ground truth and predicted 3D
bounding boxes [44]. The calculation of IOU can be represented as:

𝐼𝑜𝑈 =
area

(
𝐵𝑝 ∩ 𝐵𝑔𝑡

)
area

(
𝐵𝑝 ∪ 𝐵𝑔𝑡

) (5)

Specifically, IoU measures the overlap (intersection) area be-
tween a ground-truth 3D bounding box in bird’s-eye view 𝐵𝑔𝑡 and
a predicted 3D bounding box 𝐵𝑝 in bird’s-eye view over their union.
In our experiments evaluating cars, we adhere to the conventions
established in other 3D object detection research [18], requiring a
bounding box overlap of at least 50%.

Then we employ the AP, which is widely utilized in object detec-
tion research for autonomous driving [44], to measure the testing
performance of CooTest. To achieve fair comparison results, we use
the 11 recall positions proposed in the Pascal VOC benchmark [17],
which is defined as follows:

AP|𝑅 =
1
|𝑅 |

∑︁
𝑟 ∈𝑅

𝜌interp (𝑟 ) (6)

We apply exactly 11 equally spaced recall levels, i.e., 𝑅11 =

{0, 0.1, 0.2, . . . , 1}. The interpolation function is defined as 𝜌interp (𝑟 ) =
max𝑟 ′ :𝑟 ′≥𝑟 𝜌 (𝑟 ′), where 𝜌 (𝑟 ) gives the precision at recall 𝑟 . A higher
AP means a better performance of cooperative perception systems.

Table 2: The AP of different models on the transformed test-
ing sets under different perceiving ranges.

Model
Short Middle Long Overall

Before After Before After Before After Before After

Early Fusion 76.1 66.1 42.4 29.6 47.7 36.7 59.7 49.6

Late Fusion 73.5 68.2 43.7 34.5 36.3 31.1 55.1 48.7

V2VNet 80.6 72.1 52.6 34.9 42.6 26.8 64.6 50.9

V2X-ViT 82 72.7 51.7 36 43.2 28.9 65 53.5

AttFusion 79.8 72.3 53.1 38.2 43.6 32 64.7 54.5

F-Cooper 80.8 60.4 45.6 23.3 32.8 14.9 60.7 45.4

5 Result Analysis and Discussion
5.1 Answer to RQ1
To verify whether the transformed test dataset can effectively detect
the erroneous behaviors, CooTest applies seven transformations
introduced in Section 3.3 for each cooperative perception model on
the original test set 𝑇𝑂 to generate test data. To avoid the incon-
sistency between the size of the transformed test dataset 𝑇𝐴 and
the original test dataset 𝑇𝑂 , CooTest generates the same size of the
transformed dataset as 𝑇𝑂 for each transformation operator. Then
the transformed datasets𝑇𝐴 = {𝑇𝐶𝑇 ,𝑇𝑆𝑀 ,𝑇𝐺𝐿,𝑇𝐶𝐿,𝑇𝑅𝑁 ,𝑇𝑆𝑊 ,𝑇𝐹𝐺 }
are put into the pre-trained model𝑀 to obtain 3D bounding box pre-
diction outputs. Then we calculate the AP of car detection and total
misleading cooperation errors according to the prediction results.
We further analyze the impact of these transformation operators on
the performance of cooperative perception systems under different
perceiving ranges. Specifically, we divided the detection target into
three ranges (refer to [39, 55]) based on the distance relative to

the ego vehicle, including 0 ~30m (Short), 30 ~50m (Middle), and
50 ~100m (Long). Then we calculate the AP value on all cooperative
models for each level respectively. The drop of AP on transformed
test sets indicates that CooTest can effectively detect the potential
defects of the model under test.

Results. Figure 3 shows the AP of all tested models on the seed
sets𝑇𝑂 and transformed testing sets𝑇𝐴 . The AP of all tested models
decreases significantly on most transformed testing sets. The AP
decline percentages of the models after applying transformation
operators are 20.6% (RN), 21.7% (SW), 22.3% (FG), 16% (CL), 20.3%
(GL), 8.3% (CT), and 1.8% (SM), respectively. Therefore, both lossy
communication and adverse weather can greatly impair the accu-
racy of collaborative perception models. Table 2 further elaborates
the average precision under different perceiving ranges before and
after applying operators. After applying transformation operators,
the AP decreases for short, middle, and long-distance cooperative
perception are 10.2%, 15.4%, and 12.6%, respectively. These results
show that all the proposed transformation operators have a positive
effect on the model testing process.

Table 3: The AP and MCE of models on the transformed
testing sets generated with different guidance approaches.

Model
VGT(10%) Ran.(10%) VGT(15%) Ran.(15%)

AP MCE AP MCE AP MCE AP MCE

Early Fusion 30.8 1030 51.1 723 38.7 1670 51.5 989

Late Fusion 43.6 1202 48.7 454 45.0 1488 48.4 652

V2VNet 15.9 587 53.1 443 25.4 1100 51.6 668

V2X-ViT 43.8 756 54.6 416 46.3 1300 54.5 626

AttFusion 43.3 935 54.9 412 46.1 1416 55.5 586

F-Cooper 39.5 1844 46.0 1210 41.6 2433 46.5 1841

Discussion. According to the results of the analysis, transfor-
mation operators can reduce the AP of all models within a certain
range. Specifically, operators have a minor impact on the perception
of close objects and a more significant impact on the perception of
distant objects due to the sparse nature of the transformed point
cloud. Moreover, the experimental results show that the same trans-
formation operator has different effects on various cooperative
perception models. Based on the observations in Figure 3, the late
fusion strategy demonstrates greater resistance to interference from
weather conditions and communication noise compared to other
fusion schemes. We also find V2X-ViT and AttFusion demonstrate
superior robustness to lossy communication operators (including
CL and GL) compared to the other two intermediate fusion models.
This resilience may be attributed to the presence of attention mod-
ules that enable them to handle shared lossy information effectively.

5.2 Answer to RQ2
To evaluate the effectiveness of the proposed V2X-oriented guided
transformation (VGT) in detecting erroneous behaviors, we select
the random strategy as the baseline. Specifically, we divide the orig-
inal test set into two halves (𝑇ℎ1 and𝑇ℎ2), using one half (𝑇ℎ1) as the
initial seeds to generate transformed test cases through both ran-
dom testing and V2X-oriented guided testing. In the experiments,
we apply the random method and the V2X-guided transformation
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Figure 4: Visualization samples showing misleading cooperation errors detected by CooTest using transformed scenes. The cars
detected by the ego vehicle are marked in green, while the cars detected by cooperative perception systems are marked in red.

method to select and retain the same batch of generated data. For
each guided strategy, we retain 10% and 15% of the transformed data
to evaluate the effectiveness of the guidance strategies. Then we
calculate the AP in generated test cases of cooperative perception
models under test for each configuration. Furthermore, we count
the number of misleading cooperation errors (see Section 3.1) and
visualize some typical instances of misleading cooperation errors
detected by CooTest to provide a direct understanding.

Results. Table 3 presents the testing results of different models
on the tests generated by two guidance approaches. Obviously, com-
pared to the random guidance strategy, the proposed V2X-oriented
guidance method can help to find more misleading cooperation
errors in all configurations. Specifically, V2X-oriented guidance
identifies at least 32.2% more misleading cooperation errors com-
pared to random guidance for each configuration. Furthermore, we
find that a large number of misleading cooperation errors could lead
to a sharp decline in AP. On average, V2X-oriented guidance proves
to be 29.2% and 20.9% more effective than random guidance when
retaining 10% and 15% of transformed data, respectively. These re-
sults underscore that CooTest can achieve higher testing efficiency
by utilizing the V2X-oriented guided transformation method.

To prove the effectiveness of CooTest in detecting misleading
cooperation errors, we intercept some motivating examples found
by CooTest, as shown in Figure 4. We provide a list of six real
examples of misleading cooperation errors in the model under test,
encompassing diverse and challenging communication scenes. As
depicted in Figure 4, CooTest is capable of identifying misleading
cooperation errors covering multiple object types (e.g., car, bus, etc.)
in various transformation scenes. Specifically, surrounding objects
accurately perceived by the ego vehicle are marked with green

cuboids. However, when involving connected vehicle collaboration,
incorrect perception predictions are made, including inaccurate
position estimation (markedwith the red cuboid) and the inability to
detect ground truth objects (marked with the red five-pointed star).
One possible reason lies in that the ego vehicle’s perception system
prioritizes inaccurate shared information from collaborators, even
when the ego vehicle has correct environmental understanding.

Discussion. To investigate the effectiveness of misleading co-
operation errors found by CooTest, we conduct an analysis of the
number of misleading cooperation errors and AP values identified
by the V2X-guided transformation method. The analysis results
reveal that misleading cooperation errors can adversely affect the
performance of the cooperative perception model. Additionally, our
emphasis on misleading cooperation errors stems from the intu-
itive expectation that the cooperative perception system should
aid the ego vehicle in detecting occlusion and distant objects even
in various adverse communication scenarios. However, existing
cooperative perception systems struggle to distinguish mislead-
ing information even if the ego vehicle accurately perceives its
surroundings. For example, from Figure 4(g) and Figure 4(h), it is
evident that the ego vehicle correctly detects objects in challenging
snowy scenes. However, it fails to detect the ground truth object
after collaborating with connected autonomous vehicles. We posit
that mitigating such errors will lead to a further enhancement in
the perception performance of the cooperative perception system.

5.3 Answer to RQ3
Here we investigate whether retraining the cooperative perception
models with test scenes generated by CooTest helps enhance the
model’s robustness. We apply the generated test suites in RQ2 for
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Table 4: The test result comparison after retraining the model with the transformed data generated by CooTest.

Model

Short Middle Long Overall

AP MCE AP MCE AP MCE AP MCE

Before After Before After Before After Before After Before After Before After Before After Before After

Early Fusion 65.9 71.4 3708 1974 30.0 35.6 2716 1638 36.5 38.7 613 354 49.5 53.3 7037 3966

Late Fusion 68.6 73.5 2326 2001 35.0 47.0 1718 1078 31.5 47.4 538 317 49.4 60.6 4582 3396

V2VNet 71.5 79.0 1810 655 34.4 42.3 2070 913 27.0 31.4 613 373 50.7 57.0 4493 1941

V2X-ViT 71.9 79.8 1434 513 35.9 45.4 1985 719 29.3 33.3 696 366 53.3 59.2 4115 1598

AttFusion 71.4 78.8 1874 1131 37.8 45.0 1648 1111 32.3 35.6 632 458 53.9 60.2 4154 2700

F-Cooper 59.9 71.3 7425 1313 23.7 37.5 3784 1217 15.4 29.9 1084 424 45.4 52.0 12293 2954

model training. To demonstrate the improvement of robustness
clearly, we leverage the remaining data 𝑇ℎ2 (introduced in RQ2) to
construct the validation set. Specifically, we leverage each transform
operator to generate a transformed data set with the same size as
𝑇ℎ2, and then combine all these transformed data to create a large-
scale validation set. We keep the experimental configuration of
retraining consistent with the initial training model process, and
the retraining epoch is set as 5. To further ensure that the retrained
models perform effectively in head scenes, we tested all retrained
models on the original test scenes.

Results. Table 4 presents the AP and misleading cooperation
error numbers under different perceiving ranges of all models after
retraining with the transformed data generated by CooTest. As
shown in Table 4, it is evident that regardless of the fusion scheme
employed by the cooperative perception model, CooTest can consis-
tently enhance the AP and mitigate misleading cooperation errors
across varying perceiving ranges after retraining. Compared with
the perception performance before retraining, the overall improve-
ment range of AP is 7.7% ~22.7%, and the reduction percentage
range of misleading cooperation error is 25.9% ~76%. Additionally,
experiments show that among the six models, only the F-cooper
model exhibits a slight decrease in performance in head scenes.
In contrast, the performance of the other models remains almost
the same or slightly improved. Overall, the average accuracy of all
retrained models in the original test scenes increased by 3.1%.

Discussion. Our experiments show that using transformed data
generated by CooTest for retraining can significantly improve the
model robustness on the cooperative perception task. Meanwhile,
we find it possible to reduce misleading cooperation errors by lever-
aging retraining techniques to increase the cooperative perception
system’s overall performance. However, we find that the retrained
model still suffers from a variable number of misleading cooperation
errors. One possible reason is that cooperative perception systems
involve multiple agents collaborating in complex traffic scenarios.
The complex model structure and specific communication mech-
anisms make it difficult to directly apply retraining techniques to
completely repair all cooperative perception errors. Considering the
significant impact of misleading cooperation errors on the system,
more research on the continuous enhancement of the cooperative
perception system, such as debugging and repairing, is needed.

5.4 Threats to Validity
Data Selection. Data selection stands as one of the fundamental
threats to validity. The limitation of the experiment dataset may
threaten the generality of the results. The quality of the transformed
data is fundamentally contingent on the characteristics of the origi-
nal dataset. Consequently, when it comes to input data featuring
driving scenes not present in the training set, the retrained model
may face challenges in accurate predictions. To alleviate this threat,
CooTest adopts a diverse range of transformation operators and a
widely used large-scale dataset for experiments.
Data Simulation. One threat to validity comes from the data sim-
ulation. On the one hand, various additional factors can potentially
introduce communication issues, thereby influencing the behaviors
of cooperative perception systems. On the other hand, the gener-
ated data may not be perfectly reproducible in the real world due
to a multitude of unpredictable factors (e.g., the back-scattering
coefficient of the target, the parameters of the LiDAR sensors, etc).
However, our transformations are meticulously designed to be real-
istic, introduced in Section 4.2. Besides, we take into consideration
unexpected environmental conditions and changes for V2X com-
munication systems to the greatest extent possible.
Parameter Settings. An additional potential threat may stem from
the variability in configurable transformation parameters. Some
of our findings might not necessarily extend to different param-
eter sets during the evaluation phase. To mitigate this concern,
we meticulously selected a wide array of parameters that closely
replicate the actual cooperative driving environment within our
experimental design. We delve into the candidate parameters for
each transformation in Section 4.2.
The Testing Functionality Selection. CooTest conducts only of-
fline testing [24, 47] and identifies cooperative issues in LiDAR-
based cooperative object detection. While these issues are signifi-
cant for perception module developers, this study does not assess
their impact on subsequent tasks such as decision-making, plan-
ning, and control. This limitation underscores a crucial direction
for future research.
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6 Related Work
6.1 Testing and Verification of Autonomous

Driving Perception Systems
As a foundational component in supporting ADS industrial appli-
cations, the ability of perception systems to understand the envi-
ronment significantly influences the overall system quality [20, 36].
Recent research efforts have primarily concentrated on robustness
testing of single-agent perception systems across various driving
tasks [15, 19, 21, 48, 51]. Wang et al. [48] propose MetaOD to gener-
ate data by inserting object instances into the background image to
test camera-based perception systems. Then they assert equality cri-
teria between the original and synthesized images to reveal object
detection model defects. Moreover, Xie et al. [51] effectively assess
the robustness of object tracking systems in scenarios characterized
by varying speeds of tracked objects and temporary camera failures.
There are also a few works that focus on the testing of LiDAR-based
perception systems. LiRTest [21] utilizes metamorphic relations to
generate testing point clouds and identifies failures in the 3D ob-
ject detection models. Christian et al. [15] propose an innovative
approach for testing LiDAR-based perception systems by applying
semantic mutations to labeled real-world data.

The key difference between the aforementioned related works
and CooTest lies in their focus on single-vehicle perception quality
assurance techniques, whereas our approach involves designing
various transformation operators specifically for testing the V2X-
oriented cooperative perceptionmodule.We are the first to establish
the concept of faults attributed to misleading cooperation errors
and formulate a V2X-oriented guided transformation strategy to
improve the test efficiency of cooperative perception systems.

6.2 Metamorphic Testing
Metamorphic Testing (MT) [12, 46] is a software testing method-
ology that alleviates the test oracle problem. It discerns software
bugs by detecting violations of domain-specific MRs defined across
outputs from multiple executions of the program with different test
inputs. In conventional software testing, researchers propose the
utilization of MT to debugging [29], proving [13], fault localiza-
tion [53], program slicing [54], program repair [28], etc.

With the swift advancement of deep learning, metamorphic test-
ing has found application in testing both classification and regres-
sion tasks [22, 48, 52, 60]. Xie et al. [52] introduce an MT technique
to test machine learning classification algorithms, demonstrating
its effectiveness in identifying faults within a widely recognized
open-source classification program. Besides, Wang et al. [48] em-
ploys MT as an adaptive and effective testing strategy by asserting
the equivalence of object detection results between original and
synthetic images to expose defects in object detection systems. Guo
et al. [21] introduce LiDAR-based specific metamorphic relations
and employ them to generate various corner test cases.

The metamorphic testing methods mentioned above cannot be
directly applied in the V2X field due to the unique communication
characteristics of cooperative perception systems. In this paper,
CooTest develops a specific V2X-orientedmetamorphic testingmod-
ule for cooperative perception systems, where the communication
and weather MRs are defined in Section 3.2. As a result, erroneous

cooperative perception results can be unveiled by checking the
failure of these MRs.

7 Conclusion
In this paper, we propose and evaluate CooTest, the first systematic
and automatedmodule testing tool for V2X communication systems.
In order to enrich the test samples and uncover corner cases for
the models under test, CooTest has introduced seven innovative
transformation operators. These operators are utilized to generate
synthetic test data by applying transformations to seed data. We use
V2X domain-specific MRs to find misleading cooperation errors in
the cooperative perception models without detailed specifications.

CooTest has been evaluated using six state-of-the-art cooper-
ative detection models employing various fusion methods. The
experimental outcomes demonstrated that the transformed test
data generated by CooTest efficiently detected erroneous behaviors
and notably enhanced the robustness of V2X cooperative perception
models through retraining. This substantiates CooTest’s significant
role in ensuring the quality and reliability of autonomous driving
perception systems.

8 Data Availability
Our data are available on thewebsite: https://github.com/meng2180/
CooTest
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